
ARTIFACT
EVALUATED

AVAILABLE

Leafblower: a Leakage Attack Against TEE-Based Encrypted Databases

Zachary Espiritu†, Seny Kamara∗†, Tarik Moataz†, Valentin Ogier‡§

∗Brown University †MongoDB Research ‡NetApp
{zachary.espiritu, seny.kamara, tarik.moataz}@mongodb.com, contact@vogier.fr

op0 : INSERT (x0, ∗) ...

op1 : INSERT (x1, ∗) ...

op2 : INSERT (x2, ∗) ...
...

Persistent, resilient databases write to disk after each operation
opi in page-aligned data structures (e.g. B+-trees) that provide
fast search and retrieval for an indexed attribute xi.

1

Query Engine

Storage Engine
1 2 3 4 5 6
1 2 3 4 5 6
1 2 3 4 5 6

Pages map to B+-tree

1

2 3 4 5 6

DBs encrypt index files
using PLE mechanisms
like TEEs and ESEs.

2

A multi-snapshot adversary compares the pages
that are updated between encrypted snapshots to
determine which B+-tree nodes were updated... (§4)

3

ESEs
(S3MC, SEE,

SQLCipher, etc...)

TEEs via LibOSes
(Gramine,

other LibOSes...)

S(op1) : 1 2 3 4 5 6

S(op0) : 1 2 3 4 5 6

inv(∆enc
i) = ∆i

(pages updated
by opi)

By observing many snapshots,
we recover the B+-tree leaf
order and use it to learn the
order of opi’s by the indexed
xi’s... (§5.1 and §5.2)

4

x1 x0 x2

Learned Order:
(op1, op0, op2)

Aux
A

Recovered
op0 → x0

op1 → x1

op2 → x2!

We combine auxiliary
info A with the order
to recover the xi of
each INSERT! (§5.3)

5

Figure 1: Overview of this paper and the LEAFBLOWER attack.

Abstract—Trusted execution environments (TEEs) have
emerged as a common solution for database systems to provide
encryption in use. Several encrypted databases (EDBs) have
been deployed within TEEs using library operating system
toolchains that transparently allow existing applications to
run within TEEs without modification. This “lift-and-shift”
paradigm greatly simplifies the design of EDBs but leaves open
questions about the security of the resulting system.

In this work, we propose a new leakage attack against TEE-
based EDBs which use B+-trees in the multi-snapshot external
memory model, a weaker adversary which only observes snap-
shots of the encrypted database index files after each operation.
We show how to approximately order insertions by their
inserted value by exploiting the “structural leakage” of the
on-disk index format. Then, we leverage auxiliary information
to recover the approximate plaintext values of insert operations
with significant advantage over a naive adversary that makes
guesses based on equivalent auxiliary information. Under opti-
mal conditions—when the auxiliary is accurate and the domain
is small—we achieve up to 96% exact recovery in experiments
on real-world datasets which increases to 100% when scoped
to later operations in the transcript. Our attack requires no
injections and no information about read operations.

While our work is primarily motivated by TEE-based
encrypted databases, we demonstrate that our attack general-
izes to other kinds of page-level encryption systems including
encrypted storage engines and disaggregated database systems.

§ Work done while at MongoDB Research.

Index Terms—multi-snapshot, leakage attacks, TEEs

1. Introduction

Database encryption technologies have significantly
evolved due to increasing demands for data security and
privacy. Broadly, these technologies can be categorized as:

• encrypted storage engines (ESE), which are server-
side database components designed to encrypt database
files before they are stored on persistent storage media.
These engines protect data at rest but typically do not
protect data during processing of queries.

• encrypted databases (EDB), which encrypt data client-
side before it is transmitted to the database server.
These systems aim to protect data both at rest and in
use and provide broader confidentiality guarantees.

Encrypted databases have garnered significant attention
from both the research community and industry. Various
methods underpin these technologies such as property-
preserving encryption (PPE) [5], [18], [22], structured en-
cryption (STE) [33], [38], and trusted execution environ-
ments (TEE) like Intel SGX [37], Intel TDX [35], AMD
SEV [82], AMD TrustZone [117], and RISC-V Keystone
[95]. PPE enables specific queries on encrypted data by pre-
serving certain plaintext properties, whereas STE provides
leakage-minimizing data structures for encrypted data. TEEs
offer a hardware-secured environment that encrypts code
and memory while still preserving the ability to perform
operations on data so that plaintext memory is not directly
exposed to other untrusted system components.

TEE-based encrypted databases, in particular, have seen
extensive practical deployment. Typically, these systems en-
crypt data at the client and leverage TEEs on the server
to securely execute queries within an isolated execution
context. While TEEs can significantly simplify EDB design
compared to purely cryptographic solutions, as we will
soon explain, their use introduces several complexities when
trying to reason about the security of the overall system.

Security analysis of EDBs. Analyzing the security of EDBs
is nuanced and complex. Over time, however, a standardized
framework for security analysis has emerged, which consists
of the following complementary methodologies:

• leakage specification [33], [38]: precisely characteriz-
ing the leakage of an encrypted database and prov-
ing that the scheme reveals no information beyond
its stated leakage profile. However, specification alone
only assures that the construction leaks nothing beyond
the specified profile; it does not address whether the
defined leakage is exploitable.

• leakage attacks [20], [77], [80]: developing cryptan-
alytic attacks to extract information from the leak-
age profiles of the scheme. These attacks concretely
identify specific scenarios under which adversaries can
realistically compromise confidentiality.

• leakage analysis [50], [79], [87]: using formal math-
ematical frameworks to bound the probability that an
adversary can extract sensitive information from the
leakage profile.

While each methodology serves a distinct purpose, they are
all carried out across the same set of different adversarial
models. Two common archetypes include the persistent
model, where the adversary has access to the encrypted data
and a full transcript of operations; and the snapshot model,
where the adversary can only observe periodic snapshots of
encrypted data (in the case of the multi-snapshot model, a
snapshot after every operation).

Architectures of TEE-based EDBs. The architecture of
TEE-based encrypted databases can be broadly categorized
into the following groups:

• hybrid systems: systems designed to integrate TEEs
directly with plaintext database engines. For exam-
ple, HeDB [100], StealthDB [149] and Microsoft SQL
Server’s Always Encrypted [9] delegate specific query
operations or stages to the TEE, while keeping most
database operations external to the secure environment.

• TEE-native systems: systems such as CryptSQLite
[152], EnclaveDB [123], SecuDB [156], and
TrustedDB [14] extensively integrate their query
processing and storage engines within the TEE.
This architecture maximizes the portion of database
functionality protected by the secure environment.

• lift-and-shift systems: to minimize the overhead asso-
ciated with adapting existing databases to TEEs, this
category employs library operating system (LibOS)
frameworks. LibOSes enable existing, unmodified (or

minimally modified) applications to operate within
TEEs [8], [11], [12], [15], [42], [55], [90], [127], [131].

The conceptual appeal of these designs (especially the
lift-and-shift approach) lies in treating the TEE as a secure
and isolated environment, intuitively envisioned as a pro-
tective “enclave”. However, this analogy oversimplifies the
actual operational reality in practice.

A new leakage vector. The most obvious reason: as demon-
strated by a rich line of work, adversaries that are able to
persistently compromise the host system (potentially physi-
cally) can extract information from TEE-protected memory
through various side-channels [112], [147] by abusing mi-
croarchitectural details such as memory caches [26], [39],
[68], [76], [102], [103], [109], [146], [160], speculative
execution [29], [125], [145], memory page metadata [28],
[30], [99], [130], [151], [154], and vulnerabilities in specific
block cipher constructions for encrypting memory [97], [98],
[124], [155], [157], [158]. The adversaries in these works of-
ten require kernel-level access to manipulate and/or observe
caches, registers, and other microarchitectural components
to infer information about the victim program’s control-
flow or memory access patterns. When kernel access is not
required, such works still require the adversary to have the
ability to execute code on the same host as the targeted
process. Ultimately, the adversaries in prior work must have
the ability to persistently compromise various compute-
related components of the victim machine and/or program.

But such adversaries are not the only risk to EDBs.
A more subtle issue arises from a fundamental reality of
persistent databases—they eventually must write data to
disk. Thus, database indexes created by TEE-based EDBs
must eventually reside on untrusted storage (though in an
encrypted form). The handling and on-disk format of en-
crypted data across insecure storage—even assuming the
data is processed securely within the TEE—can inadver-
tently leak sensitive information, potentially weakening the
overall security guarantees provided by TEE-based EDBs.

A new leakage attack. In this work, we demonstrate that
the use of untrusted storage by TEE-based EDBs can be
exploited by a significantly weaker adversarial model that
has not been used in prior work. Specifically, we formalize
a subset of the leakage of a wide class of TEE-based EDBs
and exploit it via a new leakage attack under the multi-
snapshot external memory (disk) model, where the adversary
has access to a snapshot of the disk after each opera-
tion. This model is motivated by recent industry trends to-
wards designing EDBs that primarily defend against “insider
threats”, or adversaries that can compromise an account and
gain read access to a limited set of database components
(here, the storage layer).1 At the heart of our attack are
two key observations: (1) the set of disk pages modified
by database insert operations are data-dependent; and (2)

1. There are real-world case studies of adversaries who can repeatedly
read snapshots of disk but cannot compromise the compute layer or observe
individual disk reads and writes (e.g. 2019 Capital One data breach [85]).

the TEE’s resulting modifications to encrypted pages on
disk are correlated with these data-dependent page modifica-
tions. By leveraging these correlations, our attack ultimately
reconstructs the order of insertions. Then, using auxiliary
information, we can approximate the inserted values. We
describe the attack in more detail in Section 1.1.

Application to other systems. While our attack is primarily
motivated by TEE-based EDBs, the use of a weaker adver-
sary model means it also can be used to attack other page-
level encryption systems, including:

• encrypted storage engines, which implement page-
level encryption to protect against server administra-
tors that have access to the mounted filesystem. ESEs
are included in Azure SQL [108], InnoDB [113], and
WiredTiger [111], or as add-on plugins like SQLCi-
pher [159], SQLite Encryption Extension [137], and
SQLite3 Multiple Ciphers [141] for SQLite.

• disaggregated database systems, which separate com-
pute, memory, and storage to enable independent scal-
ing in each dimension. The economic and performance
benefits of disaggregation have spurred commercial dis-
aggregated databases such as Amazon’s Aurora [148],
Alibaba’s PolarDB [96], Azure SQL Hyperscale [10],
Databricks’s Neon / disaggregated PostgreSQL [115],
Huawei’s GaussDB [43], [101], and Turso’s disaggre-
gated SQLite [143]. Such systems use cloud storage
abstractions like Amazon S3 [25] as their storage layer.

Since ESEs, disaggregated database systems and TEE-based
EDBs all either implement or rely on some form of page-
level encryption, we refer to them collectively as page-level
encryption (PLE) systems and to the modules that implement
PLE (e.g., an ESE or a LibOS) as PLE modules.

1.1. Contributions

Exploiting page-level leakage in B+-tree-based TEE-
backed EDBs. Most analysis of TEEs focuses on recovering
secrets from the TEEs via side-channels under adversaries
with persistent compromise of the compute-related compo-
nents of the system. Here, we instead study page-level leak-
age in the multi-snapshot disk model where the adversary
has access to a snapshot of the disk after every operation.
As described above, this model is significantly weaker than
the traditional models often used to study cryptographic
encrypted databases or typical TEE-based applications. Fur-
thermore, our model is passive and does not require the
adversary to inject or tamper with any data.

A framework for attacking page-level leakage. We pro-
pose a novel framework that allows a multi-snapshot disk
adversary to recover the approximate order of inserted op-
erations from page-level leakage. For readability, we focus
on one specific database, SQLite [59]. We chose SQLite
because: (1) it is the most widely deployed database in
existence [69]; (2) it is an example enclave application
for many LibOSes; (3) it can be used with a large num-
ber of ESEs; and (4) though it may seem simpler than

other major databases, its (plaintext) index design introduces
unique challenges for our attack that are not present in other
databases (discussed in Appendix A). At a high-level, our
attack consists of four phases:

1) inversion: this step consists of mapping encrypted
filesystem blocks to their corresponding plaintext
database pages. The goal is to reduce the attack to a
setting where the adversary is able to observe the page
modifications as they would occur over plaintext.

2) disambiguation: given a pattern of plaintext page up-
dates, the attack needs to partition the pages into two
sets: the pages corresponding to the records and the
pages corresponding to the index. The former are the
pages storing the SQLite table, whereas the latter are
the pages storing the indexed column. Isolating the
index is crucial for our attack, as it is from this struc-
ture that we extract information about the values. The
techniques and observations employed here primarily
relate to algorithmic details of how SQLite’s B+-tree
index functions, including node splits.

3) restructuring: once the pages of the index are identi-
fied, the next step is to determine the structure of the
tree, which (ideally) allows us to track and map the
insertions to their exact pages throughout the construc-
tion of the index tree. When two operations belong to
different leaves, their order is known; but when they
belong to the same leaf, their order remains uncertain.
Here, we leverage the behavior of B+-tree rebalances
to reconstruct the order of leaves and map each inserted
value to its corresponding leaf in the tree.

4) inference: given the (approximate) order from the pre-
vious phase and assuming the existence of auxiliary
information, we can then execute an inference attack
similar to prior attacks on property-preserving encryp-
tion such as the SORTING-ATK by Naveed, Kamara,
and Wright [114]. This results in an approximate re-
covery of the value inserted by each operation.

We remark that under the persistent adversarial models
typically used to analyze the security of cryptographic EDBs
or TEE-based applications, many phases of our attack can be
simplified. For instance, folklore B+-tree inference attacks
have been mentioned in the TEE literature which leverage
the ability of an adversary who can persistently observe
memory page tables and can learn the order in which
pages are accessed (e.g. [6], [30]). This assumes such an
adversary can determine which memory pages correspond
to the B+-tree, but, if they can, the order of page accesses
immediately reveals the structure of the tree and trivializes
the disambiguation and restructuring steps. Furthermore,
these adversaries can recover B+-tree structure from not just
insert operations, but also reads. In comparison, our attack
in the multi-snapshot disk model requires a more complex
approach as we only learn the set of disk pages updated by
each insert (without any information on the order the pages
were accessed) and learn no information about reads.

Attacking SQLite with various PLE modules. We instanti-
ate and implement our attack against SQLite protected with

various PLE modules, including two SQLite ESEs, SQL-
Cipher Community Edition (SQLC) and SQLite3 Multiple
Ciphers (S3MC), and the LibOS Gramine [61] in Intel SGX.
We chose Gramine since it is the only actively maintained,
open-source LibOS recommended by Intel and is the most
widely used [90].

In Section 6, we evaluate our attack against both syn-
thetic and real datasets. In the synthetic case, we sample
one million insert operations uniformly at random, where
the target attribute belongs to domains of different sizes.
We achieve high exact recovery when the domain size is
small—for a one-byte integer, the recovery rate reaches up
to 88% for operations that occur in the last 25% of the
transcript. For larger domain sizes, exact recovery becomes
significantly less effective. However, approximate recovery
remains consistent regardless of domain size. In particular,
we achieve an average absolute error under 0.3% for the
last 25% of transcript operations. Depending on the tar-
geted attribute, this level of recovery can still be highly
relevant—for instance, in the case of salary information,
where knowing the value with precision down to cents may
not be necessary. For real datasets, we use star ratings from
Amazon products [71], [72] and data from Texas hospital
discharges [142]. Similarly, when domain sizes are small
and we choose accurate auxiliary information, we achieve up
to 96% exact recovery over the whole transcript, increasing
to 100% when scoped to the last 25% of the transcript.

Assumptions and limitations. We make two major assump-
tions in our attack. First, our snapshot adversary requires
that each snapshot corresponds to the insertion of exactly 1
record (that is, we do not target workloads that use transac-
tions to insert multiple records at once). Similar assumptions
have been used in several recent related works that addition-
ally require injections [24], [58], [70]. Second, we assume
that no delete or VACCUM [140] operations occur. (This
assumption is not strictly required, but certain sequences
of deletions can add noise to our recovery algorithm so we
simplify by not considering any deletions.) We discuss ways
of potentially relaxing these restrictions in Section 8.

Responsible disclosure. While our findings are primarily
theoretical in nature, we disclosed our work with the devel-
opers of SQLC, S3MC, and Gramine (as well as InnoDB,
MongoDB, PostgreSQL, and Turso due to Appendix A) on
April 14, 2025.

2. Related Work

We have already discussed works that attack TEEs via
various microarchitectural side-channels. Here, we focus on
a broader class of techniques used to analyze EDBs.

Structural leakage attacks on range ESAs. Our attacks
on B+-trees leverage structural co-occurrences that appear
in the multi-snapshot model due to updates. The idea of
exploiting “structural leakage” is similar to the methodology
used by Markatou, Falzon, Espiritu, and Tamassia [104]

where a persistent adversary exploits structural properties
of read queries on specific STE-based range indexes [54]
to learn how encrypted sub-queries map to the index shape
(and from there, the plaintext value of the queries). There
are more persistent model attacks that exploit other kinds
of range ESA leakage which do not show up in the multi-
snapshot model (e.g. [52], [53], [63], [64], [67], [84], [88],
[89], [91], [105], [106], [107]).

Leakage attacks on PPE. Naveed, Kamara, and
Wright [114] proposed the first attacks on deterministic
(DTE) and order-revealing encryption (ORE) [22] which
combine the leakage of DTE and ORE with auxiliary in-
formation to reconstruct the plaintext values. ORE is not
used in the systems we consider in this work, but we use
similar reconstruction techniques to turn an approximate
insert order reconstruction into an approximate insert value
reconstruction. However, since ORE leaks both order and
frequency (whereas our attack only recovers order infor-
mation), most prior PPE attack techniques (e.g. [19], [47],
[66], [92]) are not directly applicable here. We expand on
our work’s connections to PPE attacks in Section 5.3.

Other side-channel attacks on databases. Various side-
channel attacks specifically target databases (e.g. [40], [57],
[65], [78], [83], [126], [129], [150]). The closest works
use the size of encrypted database files to learn informa-
tion. Bourassa, Michalevsky, and Eskandarian [24], Hogan,
Michalevsky, and Eskandarian [70] and Fábrega, Pérez, Na-
mavari, Nassi, Agarwal, and Ristenpart [58] leverage com-
pression side-channels in cloud storage by injecting records
and measuring changes in storage size to infer information
about previous content. Pei and Shmatikov [119] present
a case study where the adversary distinguishes between
varying lengths of inserted records by measuring the length
of write-ahead logs in WiredTiger.

Leakage attacks on TEE-backed databases. We are
aware of one prior attack targeted against a specific TEE-
backed database: SQL Server’s Always Encrypted (AE) [9],
which includes a indexing scheme for performing sort-based
queries on randomized ciphertexts by storing ciphertexts
by their sorted plaintext order inside of a B+-tree. Seah,
Khu, Hoover, and Ng [128] describe an attack in which an
adversary who has query access to internal tables that reveal
the B+-tree contents can use ORE reconstruction techniques
to learn the values of the ciphertexts. (This leakage was
previously acknowledged in the original AE paper [9].)

3. Preliminaries

Adversary model. We consider a n-snapshot external mem-
ory (disk) adversary which sees the encrypted index files
written by a database after every insert operation. To make
this concrete—persistent databases use explicit fsync [74]
syscalls to flush potentially buffered writes to disk at the
end of every transaction (to ensure that committed data is
resilent to unexpected outages), so we say the adversary

learns the contents of the filesystem after every fsync.
Since an fsync happens at the end of each operation, we
will simply say that a snapshot S(opi) is the set of files
representing the encrypted database after opi was performed.

We stress that the adversary does not see internal mem-
ory, does not have the ability to perform their own operations
on the database, and does not have access to the encryption
keys. Additionally, since reads do not affect the indexing
structures on disk, we will simplify discussion by assuming
that each opi is an insertion operation.

SQLite. SQLite [59] is an embedded database that uses
a B+-tree-based storage engine. It supports page sizes
P = {4096, 8192, 16384, 32768, 65536}, and, in conjunc-
tion with the B+-tree index file, uses one of six differ-
ent journaling schemes (DELETE, TRUNCATE, PERSIST,
WAL, MEMORY, and OFF) to allow the database to recover
gracefully from unexpected crashes. We focus on the de-
faults of P = 4096 and DELETE mode as they are likely
the most widely-used, though our attacks work for every
mode except for WAL mode (as discussed in Appendix A).

B+-trees. SQLite uses a variant of B+-trees [16] credited to
a description by Knuth [86]. A B+-tree is a m-ary search
tree which maps keys to values. Every interior node stores
pointers to at most w ≤ m children nodes (p1, . . . , pw)
along with m− 2 keys (k1, . . . , kw−2). The subtree pointed
to by p1 contains search keys that are less than k1. For each
i ∈ [2, w − 1], the subtree pointed at by pi contains divider
keys that are greater than or equal to ki−1 and are less than
ki. The subtree pointed to by pw contains search keys that
are greater than or equal to kw−2. The leaf nodes contain
no pointers and contain search keys and their associated
values. Querying for a key is done by traversing the tree
and performing a search at each level until a leaf is reached
and the key’s associated value is found.

Inserting a new key-value pair starts in the same way
as a query—first, we find the leaf to insert the key into—
then, we insert the key-value pair in sorted position in the
node.2 If inserting the key would cause the node to reach
capacity, we split the at-capacity node’s keys across two new
nodes, then update the parent’s pointers and divider keys
accordingly. Splits may recursively propagate up the tree
if inserting the new child into the parent causes the parent
to go over capacity. B+-trees commonly use a rebalance
optimization that attempts to reduce the number of splits in
expectation. Instead of splitting nodes to a new level when
capacity is reached, a local rotation occurs where keys from
the at-capacity node are flowed into its neighbors. This limits
the tree’s height and more effectively utilizes the space in
each node. We discuss rebalances in detail in Section 5.2.

While the theoretical description of an B+-tree with a
fixed number of keys and children is convenient to illustrate
examples, practical B+-trees are usually defined in terms of
a node capacity in bytes. In SQLite, the node capacity is

2. Modern B+-tree databases treat every key as unique by concatenating
a salt or a record identifier to the end of the key, so the insertion algorithm
does not behave differently on previously inserted values.

P − c where c is a constant amount of space reserved for
node metadata. Then, the pointers and key-value pairs are
stored using variable-length encodings. This packs as much
data as possible into each node.

SQLite file layout. A SQLite database’s on-disk represen-
tation consists of two files: the main file and the rollback
journal [133]. (The journal is not used in our attack so we
do not discuss it further.) The main file is logically organized
in logical database pages of size P and can be viewed as
a collection of multiple, interleaved B+-trees. (This is to
be distinguished from filesystem blocks, which correspond
to the storage system’s fundamental unit of data storage;
here, we assume a block is always 4 KiB.) Each SQL
table is associated with one record tree, which maps 64-bit
record identifiers to row data. Each SQL index is associated
with one index tree which maps arbitrary keys to record
identifiers. In this work, we consider SQL tables with one
index. When an insertion occurs, SQLite first performs the
corresponding insertions on the B+-trees in memory. Then,
SQLite updates the main index file and ensures that the file
has been written to persistent storage using fsync.

We now describe the representation of a SQLite main
file that contains just one table and one index. The file
contains 3 pages. Page 0 stores metadata like the schema
of the database and the page identifiers of the roots of any
B+-trees. Then, the root pages of the table and index are in
the order they were defined in the schema. Since the table
must be defined before the index, page 1 corresponds to
the root of the record tree and page 2 corresponds to the
root of the index tree. When new nodes are allocated for
either tree, new pages are appended to the end of the file in
the order they were requested. This means that the record
and the index trees are interleaved with each other as the
database grows. This introduces another challenge for our
adversary—in addition to learning each tree’s structure, the
adversary must determine which tree each page belongs to.

4. Warmup: Learning from Pairs of Snapshots

We start with an example (Figure 2) where the adversary
already knows the structure of the plaintext B+-tree after
some initial operation opi. Then, consider the following two
operations opi+1 and opi+2 and the encrypted snapshots
taken after each operation S(opi), S(opi+1), and S(opi+2).
What can we learn about opi+1 and opi+2 from the snap-
shots? To answer this, we introduce two concepts: encrypted
and plaintext deltas and inversion functions.

Inverting encrypted deltas. The encrypted delta of opi+1,
denoted ∆enc

i+1, is the set of the encrypted filesystem block
indices that have changed as a result of executing opi+1. As
illustrated in Figure 2, given the pair of snapshots S(opi)
and S(opi+1), we can easily compute ∆enc

i+1 by pairwise
comparing each 4 KiB block in S(opi) and S(opi+1).
However, what we really want to know is the plaintext delta
of opi+1, denoted ∆i+1, or the set of indices corresponding
to the logical database pages that changed as a result of

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

S
(
opi

)
:

S
(
opi+1

)
:

S
(
opi+2

)
:

(time)

opi+1
INSERT (xi+1, ∗)

opi+2
INSERT (xi+2, ∗)

...

...

inv
(
∆

enc
i+1

)
= ∆i+1 = {3}

inv
(
∆

enc
i+2

)
= ∆i+2 = {5}

1

2 3 4 5 6

index tree :=

opi+1

opi+2

...if the adversary knows
the index tree structure.

Then, ∆i+1 and ∆i+2

implies xi+1 ≤ xi+2.

Compare pairs of snapshots to learn
∆

enc
i , the encrypted page ids...1

Infer plaintext pages ∆i

via inversion inv(∆enc
i)...2

Pages directly identify updated B+-tree nodes,
so we learn relative ordering of inserted values...3

Figure 2: Example of what we can infer using the snapshots surrounding two operations, opi+1 and opi+2 (assuming the database page size P = 4096).

executing opi+1. Since each B+-tree node corresponds to a
page, the indices in ∆i+1 can be used to identify the nodes
that were updated by opi+1.

We recover this information through a mechanism we
call inversion where we create an inversion function inv
for each scheme such that inv

(
∆enc

i+1

)
= ∆i+1. This comes

from the observation that PLE modules structure files so
they can access random pages in sublinear time and thus
access and update pages deterministically. In most cases,
determining inv is easy. SQLC and S3MC modify SQLite’s
B+-tree nodes so all cryptographic metadata is stored within
existing database pages. Thus, every P -size page fits within
P/4096 filesystem blocks. (This can be verified by direct
inspection of the respective paging routines in [141], [159].)
Since all valid database page sizes P are divisible by 4 KiB,
SQLC and S3MC’s inv function just needs to convert the 4
KiB block indices to P -size page indices).3

Proposition 4.1. The inv function of SQLC and S3MC is

invESE

(
∆enc

∗
)
=

{
e
∣∣∣ b ∈ ∆enc

∗ ; e =
⌊ b

P/4096

⌋}
.

Inverting Gramine’s Intel Protected File System (PFS)
format is more complex [75]. At a high-level, the first 3
KiB of a PFS-encrypted file is stored in filesystem block 0;
then, block 1 is a Merkle tree node, followed by 96 data
blocks (each of which store 4 KiB of the original file). This
pattern starts again with another Merkle tree node every 97
filesystem blocks. Despite this additional complexity, when
the logical database page size P is larger than 4 KiB, we
can still directly invert the encrypted deltas into plaintext
deltas since the Merkle tree structure is deterministic.

Proposition 4.2. The inv function of Gramine is

invGram

(
∆enc

∗
)
=

{
e
∣∣∣ b ∈ ∆enc

∗ ; b > 0; q =
⌊ b− 1

M + 1

⌋
;

r = b− q(M + 1); r > 0;

e =
⌊ (Mq + r − 1)

P/4096

⌋}
where M = 96 is the number of data blocks per Merkle tree
node in Gramine and P ∈ {8192, 16384, 32768, 65536} is
the logical database page size of SQLite.

3. SQLite always flushes database pages in full P -sized increments
(regardless of how much of the page was modified) so all 4 KiB blocks
that span a given page are modified when the database page is modified.

Proposition 4.2 can be verified by direct inspection of
[62]. There is one last edge case, however—when Gramine
is used with a SQLite page size P of 4 KiB. Due to
Gramine’s 1 KiB offset at the start of the file, some ambi-
guities arise where there are two or more possible plaintext
deltas that could have generated an encrypted delta. Fortu-
nately, we can overcome this noise with a simple trick—we
simply attempt to run the attack, and if certain structural
properties are violated along the way, we can backtrack and
try a different plaintext delta. We discuss backtracking as
a broader attack technique in Section 5.2 and defer more
detailed discussion of this specific case to Appendix B.

With the inv framework, all we need to consider is
the behavior of page writes in the plaintext world. This
makes things substantially easier to analyze and allows us to
generalize our attack to multiple PLE modules. As such, in
the rest of the attack, we only need to consider the behavior
of page writes in the plaintext database file.

Exploiting plaintext deltas. The inversion function allows
us to recover ∆i+1 and ∆i+2, or the sets of indices of the
plaintext logical database pages that were updated by opi+1

and opi+2. By design, these pages map directly to nodes in
the underlying B+-tree. We can use this information to infer
something about the relationship between opi+1 and opi+2.

For the purposes of this warmup, let us assume that the
adversary knows how the plaintext pages map to nodes in
the underlying index tree after operation opi. (We eliminate
this assumption in the description of the attack in Section 5.)
As illustrated in Figure 2, the most significant interactions
between the plaintext deltas and the known tree structure
are in leaves of the tree. If the sets of leaves updated by
opi+1 and opi+2 are disjoint, we learn the relative ordering
of the values inserted by opi+1 and opi+2. On the other
hand, if the leaves updated by each operation overlap, we
cannot definitively conclude the ordering of the values of
opi+1 and opi+2. Nevertheless, we still learn that the values
of opi+1 and opi+2 are “close” to each other because they
landed in the same leaf. Our attack performs approximate
order reconstruction by repeatedly leveraging this behavior.

This exercise also reveals an observation that simplifies
our attack—the inference does not require knowledge of the
entire tree layout but rather just the layout of the leaves
of the index tree. In the next section, we will develop
techniques to recover the structure of these leaves.

(P1) Nodes at depth d are updated before nodes at depth d′

where d > d′.
(P2) New nodes are appended to the file in the order they

were created.
(P3) The index tree is updated before the record tree is

updated.
(P4) In the no-deletion setting, nodes never switch between

the index tree or the record tree after they are created.

Figure 3: Properties of SQLite B+-trees, determined by direct inspection
of the B+-tree insertion algorithms.

5. The Attack: Learning the Leaves

Learning the structure of the index tree requires us
to understand how page updates (as captured by plaintext
deltas) can tell us about the position of nodes in the tree. In
this section, we will show how we can reason about various
properties of B+-tree insertions to learn the ordering of the
leaves of the SQLite index tree. Along the way, we will solve
for one additional challenge introduced by SQLite through
a process called disambiguation.

Notation. We use maxk(S) to denote the largest k ele-
ments of S. We denote the index tree after operation opi
as T idx

i and the record tree after operation opi as T rec
i .

We denote their roots respectively as rootidx and rootrec.
Then, given T ∗

i ∈
{
T idx
i , T rec

i

}
, we denote the set of

nodes in T ∗
i as N

(
T ∗
i

)
, the set of leaf nodes in T ∗

i as
LEAVES

(
T ∗
i

)
=

{
p ∈ N

(
T ∗
i

) ∣∣ p has degree 1
}

and the set
of non-leaf nodes in T ∗

i as NONLEAF
(
T ∗
i

)
= N

(
T ∗
i

)
\

LEAVES
(
T ∗
i

)
. Finally, given a node p ∈ N

(
T ∗
i

)
, we denote

the parent of p as parent
(
p
)
. We previously established the

one-to-one mapping between B+-tree nodes and the plaintext
page numbers that identify them, so we abuse notation and
do not distinguish between node identifiers (page numbers)
as in p ∈ ∆i and the nodes themselves as in p ∈ N

(
T ∗
i

)
.

5.1. Disambiguation

Each SQLite insertion modifies both the index tree and
the record tree. We only care about the index tree, but recall
that the pages representing these two trees are interleaved
in the same file. Aside from the initial state of the file,
the logical order of the pages in the main file is not the
same across different insertion transcripts. This requires us
to disambiguate which tree each page belongs to. To do this,
we leverage properties of SQLite’s implementation of B+-
trees (Figure 3) and various algorithmic and graph-theoretic
observations about them.4 First, we capture the notion of a
“new node” being added by an operation.

Definition 5.1. The new nodes introduced by opi are

newi = {p ∈ ∆i | p /∈ ∆j ∀ 0 ≤ j < i} .
Then, p is a new node introduced by opi if p ∈ newi. (When
opi is clear from context, we simply say p is a new node.)

4. Due to space restrictions, the proofs of most lemmas and theorems in
this section are deferred to the full version of the paper.

Our idea is to iterate over the transcript of deltas in
order and find operations that introduce a new node. Then,
we identify which tree the new node belongs to. Given (P4),
it suffices to identify the correct tree for each node as it is
introduced to fully disambiguate the nodes across all deltas.
There is a core property of the B+-tree that allows us to
learn each node’s tree—whenever a new node is introduced
by some operation, its parent node must be updated in the
same operation since parents store pointers to their children.

Lemma 5.2 (Parental presence at inception). If p is a new
node introduced by opi, then parent

(
p
)
∈ ∆i.

Lemma 5.2 is obvious in an algorithmic sense, but for an
adversary who does not know the edges between the nodes
ahead of time, the contrapositive of Lemma 5.2 leads to
the following crucial observation. Let T ∗

i ∈
{
T idx
i , T rec

i

}
.

Since NONLEAF
(
T ∗
i−1

)
are the only possible parents of

a new node, if there is exactly one T ∗
i−1 where ∆i ∩

NONLEAF
(
T ∗
i−1

)
̸= ∅, then we can conclude that the new

node belongs to T ∗
i . However, there are cases where non-leaf

nodes from both the index tree and the record tree appear in
∆i. As such, we need additional tricks to determine which
tree the new node(s) belong to. To start, we combine (P2)
and (P3) to observe that, when a list of new nodes (sorted
by page number) is added in a given operation, there is a
way to partition the sorted list such that all the nodes on
one side were added to the index tree and all of the nodes
on the other side were added to the record tree.

Lemma 5.3 (Split point). Let newi = {p1, . . . , pk} be the
set of new nodes introduced by opi and let p1 < · · · < pk.
Let newrec

i = newi ∩ N
(
T rec
i

)
and suppose newrec

i ̸= ∅.
Let pj = min

(
newrec

i

)
. Then, p1, . . . , pj−1 ∈ N

(
T idx
i

)
and

pj , . . . , pk ∈ N
(
T rec
i

)
.

Proof. It follows directly from (P2) and (P3) that there
exists 1 ≤ j ≤ k + 1 such that p1, . . . , pj−1 ∈ N

(
T idx
i

)
and pj , . . . , pk ∈ N

(
T rec
i

)
. Then, suppose newrec

i =
newi ∩ N

(
T rec
i

)
is not empty. This implies j < k + 1, so

min
(
newrec

i

)
exists. By definition, pj is the smallest node

in {pj , . . . , pk} so pj = min
(
newrec

i

)
.

By identifying the split point for each set of new nodes,
we can use Lemma 5.3 to correctly categorize the rest of
the nodes. But Lemma 5.3 may seem circular at first—how
can we know newrec

i if we do not know the split point pj?
To identify the split point for each newi, we start with a
simplifying assumption that the page size of the B+-tree is
set “reasonably” with respect to the size of the inserted key-
value pairs—specifically, each node fits at least two key-
value pairs. (This is a conservative assumption since two
key-value pairs per node is very low.)

Assumption 5.4. Let T ∗
i ∈

{
T idx
i , T rec

i

}
and let c be the

node capacity of T ∗
i . Then, every key-value pair (ki, xi)

stored in T ∗
i has positive size si < c/2.

Using Assumption 5.4, we can prove a technical lemma
which states that when a set of new nodes are added to a

(time)

opi

opi+1

Example 1: If record tree did
not split in opi...

T
idx
i

T
rec
i

rootidx

p1 p2

rootrec

...then
rootrec ∈
∆i+1

confirms no
record tree

split in opi!

rootrec

Example 2: If record tree did
split in opi...

T
idx
i

T
rec
i

rootidx rootrec

p1 p2

...then
rootrec /∈
∆i+1

confirms
record tree

split in opi!

rootrec

p1 p2

Example 3: If record tree split and
new nodes added to index tree in opi...

T
idx
i

T
rec
i

rootidx

p1

p2

rootrec

p3 p4

...then Lemma 5.3
tells us

max2(newi) =
{p3, p4} are

leaves of T rec
i !

rootrec

p3 p4

Figure 4: Examples of how to identify when initial record tree split occurs and the new leaves that were added to the record tree in that initial split. Nodes
highlighted in yellow were updated by opi and thus are in ∆i. Red outlines denote that the node is new.

single tree in some opi, each node is placed at distinct depth
(except for operations which increase the tree’s height).

Lemma 5.5 (Unique new node depths). Let T ∗
i ∈{

T idx
i , T rec

i

}
and let c be the node capacity of T ∗

i . Suppose
a pair (k′, x′) with size s′ < c/2 is inserted resulting in the
updated tree T ∗

i+1. Then,
1) If the height of T ∗

i+1 is equal to the height of T ∗
i , at

most one new node per depth was added to the tree.
2) If the height of T ∗

i+1 was increased by 1, at most one
new node per depth was added to the tree except two
nodes are added below the root.

An important corollary emerges from a direct combina-
tion of Lemma 5.5 and the properties (P1) and (P2)—given
a set of new nodes introduced by some opi that all belong
to the same tree, the node with the lowest page number is
the only possible leaf if the tree’s height is greater than 1.

Lemma 5.6 (Lowest new page is only candidate leaf). Let
newi be the set of new nodes introduced by opi, let T ∗

i ∈{
T idx
i , T rec

i

}
, and let new∗

i = newi ∩ N
(
T ∗
i

)
. If the height

of T ∗
i−1 is greater than 1, then at most one p∗i ∈ new∗

i ∩
LEAVES

(
T ∗
i

)
. If such a p∗i exists, then p∗i = min

(
new∗

i

)
.

Applying Lemma 5.6 to the record tree’s construction
tells us that if we can identify the leaves of the record
tree as they are introduced, we can then use Lemma 5.3
to disambiguate all of the other new nodes that were added
in the same operation. But Lemma 5.6 has two caveats:

1) It requires that the tree’s height is greater than 1 prior
to the new node’s addition to the tree. If the height
of the tree is 1 (meaning there is only the root node),
then more than one new leaf might have been added
to the tree. This requires some special handling which
we discuss in Section 5.1.1.

2) Lemma 5.6 leaves open the possibility that no new leaf
was introduced. This would introduce a number of edge
cases. Luckily, we show that a new record leaf is always
introduced whenever the record tree gets new nodes
(and how to identify such leaves) in Section 5.1.2.

5.1.1. Record tree’s initial split. Figure 4 is a companion
illustration for this section. To explain why Lemma 5.6
does not generalize to trees of height 1, consider a B+-tree
with only 1 node root∗. Inserted key-value pairs are placed
into root∗ as long as it has remaining capacity. When an
insertion occurs that cannot be placed into root∗ due to lack
of space, a split occurs. As part of the split, root∗ remains
the tree’s root and two new nodes are created as children of
root∗. Then, the contents of root∗ are distributed between
its new children through a rebalance process. Exactly how
this rebalance works is not important here—the important
point is that the addition of these nodes at the initial split
violates the “at most one” property of Lemma 5.6.

Because of this, we identify the record tree’s initial split
in a slightly different way. Suppose the record tree splits in
opj . (We stress that the adversary does not know j upfront.)
Then, for all i < j, each opi will insert its associated record
into the root of the record tree rootrec and so ∆i∩N

(
T rec
i

)
=

{rootrec}. When opj is reached, two new nodes, p1 and p2
are added as children of rootrec and so ∆j ∩ N

(
T rec
j

)
=

{rootrec, p1, p2}. However, just seeing two new nodes is not
enough to conclude that the record tree had its initial split
since it could have been new nodes added to the index tree.
To do this, we can verify that the record tree actually did
split in opj by checking that rootrec was not modified in the
following operation opj+1. Finally, even if new nodes were
also added to the index tree in opj , Lemma 5.3 tells us that
the new nodes with the two greatest page numbers are the
two nodes that were added to the record tree.

5.1.2. After the initial split. We now present our technique
for disambiguating all new nodes that appear after the record
tree’s initial split. First, we explain why a new record leaf
is always introduced whenever the record tree gets new
nodes. Then, we show how to identify those leaves using
a surprisingly simple trick in our core disambiguation result
(Theorem 5.11). To start, we make a series of observations
about the default behavior of insertions with respect to the
record tree in SQLite. All rows within SQLite tables have

a 64-bit signed integer key, the record ID, that uniquely
identifies the row within its table. (This is even the case
when a custom primary key is assigned to the table.) The
default behavior in SQLite is that record IDs are assigned
automatically as an incrementing unique integer.

Assumption 5.7. Record IDs are monotonically increasing
over the transcript of insertions.

Given the ubiquity of Assumption 5.7, SQLite’s B+-tree
implementation has a special optimization. Since each new
record ID is always greater than all previously existing IDs,
new entries on the record tree are always at the extreme
right end of the tree. Thus, instead of performing a normal
rebalance on the record tree, SQLite appends a new node to
the right-hand side of the page and adds the new entry to
that page without performing a full rebalance. Subsequent
insertions add records to that new node until it reaches
capacity—at which point the same so-called “quick rebal-
ance” routine [138] occurs again. To capture this special
insertion behavior, we start with the following definition.

Definition 5.8. The active record node for opi is the p ∈
leaves(T rec

i) in which ri = (xi, ∗) is inserted.

Such a node exists for all opi since all data in a B+-tree is
stored in the leaves and, since data is never split up between
two nodes, only one such node exists for a given record ri.
We observe an interesting behavior about the active record
node: it is always at the right side of the tree, and it remains
the active record node for a range of operations until the
active record node fills up and requires a new node to be
added to the tree. We formalize this with the following.

Lemma 5.9 (Active record node chaining). Let p be the
active record node for opi. Given opi+1, the subsequent
insertion operation, and newi+1, the new nodes introduced
by opi+1, exactly one of the following is true:

1) N
(
T rec
i+1

)
∩newi+1 = ∅ and p is the active record node

for opi+1.
2) There exists q ∈ N

(
T rec
i+1

)
∩ newi+1 where q is the

active record node for opi+1.

A key corollary emerges from the contrapositive of
Lemma 5.2 and Lemma 5.9—a non-leaf node of the record
tree is only updated exactly when the active record node
changes from the previous operation.

Lemma 5.10 (Record non-leaves only updated on new
leaf). Let newi be the new nodes introduced by opi.
∆i ∩ NONLEAF

(
T rec
i

)
̸= ∅ if and only if there exists

q ∈ newi ∩ LEAVES
(
T rec
i

)
.

Lemma 5.10 tells us that operations in which a non-leaf
node of the record tree appears are exactly the operations
that add a new record tree leaf. If we can identify which
of the new nodes is the new leaf, then Lemma 5.3 and
Lemma 5.6 tell us that the new leaf “splits” the ordered set
of new nodes such that we can identify which nodes belong
to the index tree and which nodes belong to the record tree.
We identify new record tree leaves with the following result.

1: leaves := ∅ ▷ Leaf nodes of T rec

2: nonLeaf := {rootrec} ▷ Non-leaf nodes of T rec

3: maxNode := max({rootidx, rootrec}) ▷ Max node seen so far
4: for i ∈ [0, n) do
5: newi := {p ∈ ∆i | p > maxNode}
6: maxNode = max(newi ∪ {maxNode})
7: if leaves = ∅ then ▷ Special-case: Section 5.1.1
8: if rootrec /∈ ∆i+1 then
9: leaves = max2(newi) ▷ By Lemma 5.3

10: else if ∆i ∩ nonLeaf ̸= ∅ then ▷ After initial split: Section 5.1.2
11: leaf := max (newi ∩∆i+1) ▷ By Theorem 5.11
12: leaves = leaves ∪ {leaf}
13: nonLeaf = nonLeaf ∪ [leaf + 1,maxNode]
14: return recordNodes := leaves ∪ nonLeaf

Algorithm 1: LEAFBLOWER disambiguation.

Theorem 5.11 (Leaf disambiguation). Let newi be the new
nodes introduced by opi denoted such that p1 < · · · < pk
and p∗ = max(newi∩∆i+1). If the height of T rec

i−1 is greater
than 1 and ∆i ∩ nonleaf

(
T rec
i−1

)
̸= ∅, then

(a) pL ∈ N(T idx
i) for all pL ∈ newi where pL < p∗,

(b) p∗ ∈ leaves(T rec
i), and

(c) pR ∈ nonleaf(T rec
i) for all pR ∈ newi where pR > p∗.

Using Theorem 5.11, we derive Algorithm 1, the first
step in the LEAFBLOWER attack. Algorithm 1 first handles
the initial split edge case by Lemma 5.3. After that, it
identifies the nodes that belong to the record tree by repeated
application of Theorem 5.11. This set of nodes will be used
in the second part of the attack to isolate the nodes that
belong to the index tree.

Theorem 5.12. Algorithm 1 returns N
(
T rec
n

)
.

5.2. Tracking the Leaves via Rebalances

At this point, we have identified the set of pages that
correspond to the index tree. We now need to do a few
things: (1) identify the leaves of the index tree, (2) determine
the operations that are contained in each leaf, and (3) track
the ordering of the leaves throughout the construction of the
tree. By doing this, we will end up with an ordered list of
the leaves and the operations that are contained within them.

Leaf identification works using the same techniques
from Section 5.1. Starting from the knowledge that Page 1
is the rootidx, we first use the observation from Section 5.1.1
to identify the initial split of the index tree—namely, if the
initial split happens in opj , then rootidx ∈ ∆i for all i ≤ j

and rootidx /∈ ∆j+1. This also means that two new leaves are
introduced by opj as children of rootidx. After handling the
initial split, we can identify the leaves by directly applying
Lemma 5.6—when new nodes newi are introduced by an
operation opi, the smallest new node p = min(newi) is the
only node that could be a leaf. By default, we simply assume
that p is a leaf and classify it as such. (We discuss later how
to handle rare cases where it turns out p is not a leaf.)

To track the ordering of the leaves throughout the
transcript, we leverage the behavior of SQLite’s rebalance
subroutine [135]. When SQLite rebalances a set of nodes
pa, pb, pc, it reassigns their page numbers so that the logical

1 5 4 2 3 1 4 5 2 3 1 2 4 5 6 3

if insertion # t + 1
rebalances {1, 4, 5}...

if insertion # t + 2
adds new node 6 &

rebalances {2, 4, 5, 6}...

Figure 5: Rebalances renumber the filesystem pages of nodes so that the filesystem page numbers correspond to the logical order of the rebalanced pages.

1: exclusions := ∅ ▷ Used for backtracking “imposter” leaves
2: leaves := ∅ ▷ Leaf nodes of T idx

3: maxPage := max({rootidx, rootrec}) ▷ Max node seen so far
4: Initialize LO as LeafOrganizer ▷ See Section C
5: for i ∈ [0, n) do
6: ∆idx

i := ∆i \ recordNodes ▷ recordNodes from Algorithm 1
7: newidx

i :=
{
p ∈ ∆idx

i

∣∣ p > maxPage
}

8: if leaves = ∅ then
9: if

∣∣newidx
i

∣∣ = 2 then ▷ Special case: initial split
10: Add operation ids [0, i] to page min

(
newidx

i

)
in LO

11: Reorder and redistribute sort
(
newidx

i

)
in LO

12: else
13: balanced = sort

(
∆idx

i ∩ leaves
)

14: if not LO.IsConsistent (balanced) then
15: Add inconsistent node to exclusions and backtrack
16: if newidx

i ̸= ∅ then
17: probableNewLeaf := min

(
newidx

i

)
▷ By Lemma 5.6

18: if probableNewLeaf /∈ backtrackExclusions then
19: leaves = leaves ∪ {probableNewLeaf}
20: balanced = balanced || ⟨probableNewLeaf⟩
21: p = balanced [⌈|balanced| /2⌉] ▷ Pick the middle leaf
22: Add operation identifier i to page p in LO
23: Reorder and redistribute balanced in LO
24: Iterate over pages in LO in order and concatenate their operation

identifiers into a single ordered sequence orderedOps
25: return orderedOps

Algorithm 2: LEAFBLOWER index leaf and insertion ordering.

ordering of pa, pb, pc is the same as the ordering of their
page numbers on disk. Then, it redistributes the keys stored
in pa, pb, and pc so that each node contains roughly the same
amount of keys. Figure 5 illustrates this behavior. Because
new nodes in the index tree are only created as a result of
rebalances that overflowed, we can always learn the position
of new nodes as they appear using this technique.

Identifying the leaves that each operation landed in
is simple—we just look at the leaves that each operation
modified. If only one leaf is modified, then we know exactly
which leaf the operation belongs to. We do not know its
ordering relative to other operations in the same leaf—but
we find that placing the operation in the middle of the
leaf is enough to achieve good reconstruction results in
our evaluation. If multiple leaves are modified (because a
rebalance occurred), we do not know definitively in which
leaf it landed. However, similar to the single leaf case, we
find that placing it in the middle of all operations that were
involved in the rebalance achieves good reconstruction.

This observation leads us to our reconstruction attack:
we maintain an ordered list of leaves, each of which contains
its own ordered list of operations (representing the opera-
tions whose values are contained inside the leaf). Then, we
iterate through the plaintext deltas again, and only consider

those edits that correspond to leaves of the index tree. If a
single leaf was edited, then we add that operation to that leaf
in the structure in the middle of all previous operations that
were in the leaf. If multiple leaves were edited, we perform
a “rebalance” over the operations across all of the edited
leaves, reorder the leaves themselves so that the rebalanced
leaves’ page numbers are in ascending order. Then, we
update the list of operations stored in each leaf according to
the result of the rebalance. To handle reordering efficiently,
we instantiate the ordered list of leaves as an addressable
doubly-linked list with an additional rebalance operation
which approximates SQLite’s rebalance procedure. We refer
to this structure as the LeafOrganizer in Algorithm 2. More
detail on this data structure is in Appendix C.

Backtracking due to “imposter” leaves. While in most
cases, the candidate leaf p∗ given by Lemma 5.6 is indeed
a leaf, Lemma 5.6 unfortunately leaves open the possibility
that p∗ is actually an interior node of the tree. Because the
B+-tree supports variable-length keys, it is possible that a
rebalance at the lowest level did not require a new leaf
node but pushed new divider keys into the rebalanced nodes’
parent that caused a rebalance at a higher level. This, in turn,
could have created a new node at a level higher than the leaf
level. Treating the interior node as a leaf can mess up the
actual ordering of leaves in our bookkeeping structure and
result in potentially incorrect results.

To handle this, we observe that rebalances always occur
on sets of leaves whose logical ordering is contiguous. In
the case where the p∗ is not actually a leaf, a leaf rebalance
operation later in the transcript that initially seems to include
p∗ may reveal that including p∗ in the rebalance would result
in a violation of the contiguity property. If so, we then know
that p∗ could not have been a leaf. With additional book-
keeping, we can backtrack to the place where we inserted
p∗ as a leaf and instead reclassify it as an interior node.
It is possible that we never see such a contiguity violation,
but we find that this does not affect the performance of our
attack. (In practice, backtracking is rare—our experiment
showed an average of two backtracks across workloads.)

The attack. Given the plaintext deltas (∆i)i∈[n] and
recordNodes from Algorithm 1, Algorithm 2 reconstructs
the ordering of the leaves of the index tree after each
operation opi and traces a possible ordering of the inserted
indexed values xi throughout the transcript. At the end, we
iterate over the sequence of leaves in-order and concatenate
the sequence of record identifiers held by each leaf. This
gives us the final approximate ordering of the insertions.

5.3. Mapping Insertions to Values

As the last step, we show how to map the approxi-
mate insertion order that was recovered via Algorithm 2
to plaintext inserted values if the adversary has auxiliary
information about the insertions—specifically, information
about the distribution of inserted values.

Notation. Given a distribution A, we denote the cumula-
tive distribution function of A as cdfA and its inverse as
Q(x) := cdf−1

A (x) (also known as A’s quantile function).

The attack. Given the approximate insertion order recon-
struction from Algorithm 2 and an auxiliary distribution A,
the adversary computes the quantile function of A to retrieve
the estimated value x̃i for each i ∈ [n] and n ∈ N:5

x̃i = cdf−1
A

(
i

n

)
.

The intuition behind our value reconstruction is straight-
forward: we observe that ordered elements can be placed to
conform within the surface defined by a discrete probability
mass function characterized by A. This placement not only
preserves the order of elements but also aligns proportion-
ally with each probability in the support of A.

Remark. As mentioned in Section 2, our approach shares
similarities with inference attacks targeting order-preserving
(OPE) and order-revealing encrypted (ORE) columns; in
particular, it is similar to the dense case of the SORTING-
ATK by Naveed, Kamara, and Wright [114]. However, the
key distinction lies in the type of leakage: while OPE- and
ORE-encrypted columns reveal both order and frequency
when two values are identical, our attack only recovers the
order. This difference prevents us from applying techniques
from improvements to the SORTING-ATK (e.g. [19], [66],
[92]) which require either frequency leakage (which is not
recovered by our attack6) or leakage from multiple columns.

5. For simplicity, we assume that the cumulative distribution function is
continuous and strictly increasing, as was the case for all our auxiliaries in
the evaluation section. As a technical remark, if this condition is not met,
one could instead utilize the generalized inverse distribution function [49].

6. There are several barriers to recovering exact or even approximate
frequency information. As described in Section 3, B+-tree insertions treat
every inserted key as unique, so the insertion algorithm’s behavior is
identical whether or not the key has been inserted before. Even if the
same leaf node is updated by multiple operations, it only tells us that the
values on that page are close together in rank. As such, under the current
adversarial model, it is difficult to conclude anything about the frequency
of inserted values. Nevertheless, we conjecture that slightly strengthening
the adversary model may allow frequency reconstruction. To consider a
strong case, the persistent adversaries used in prior TEE attacks (discussed
in Section 1) can see the number of times B+-tree pages are updated or
read in a given operation (whereas our model cannot see how many times
each page was accessed during the course of a single insertion). Frequency
information may be derivable in this scenario. Even “weaker” models like
injection-based adversaries (e.g., [24], [58], [70]) may also be able to use
injections to learn more fine-grained information about the ordering and
frequency of values within each page. In all these scenarios, improvements
to the SORTING-ATK (e.g. [19], [66], [92]) may be applicable.

6. Evaluation

We implemented and evaluated LEAFBLOWER against
SQLite 3.49.1 [136], SQLCipher 4.7.0 [159], SQLite3 Mul-
tiple Ciphers 2.1.0 [141], and Gramine 1.8 [61]. The per-
formance of LEAFBLOWER is nearly equivalent regardless
of the underlying PLE module, so we present a single set
of results that show the worst-case performance across all
PLE modules. Our artifact containing our implementation
and reproducibility instructions is available at [51].

Methodology. Given a dataset of n records, we create a
SQLite database with page size P = 40967 under each
PLE module with one table and one index. Then, we
insert records from the dataset into the table. After each
insertion opi, we take a snapshot S(opi) of the index file
and record the encrypted delta ∆enc

i between it and the
previous snapshot. We then pass the list of encrypted deltas(
∆enc

i

)
i∈[n]

to the LEAFBLOWER algorithm. LEAFBLOWER

computes the inversion function for the given PLE module to
recover the plaintext deltas

(
∆i

)
i∈[n]

, performs approximate
insert order reconstruction, and performs approximate value
reconstruction using an auxiliary dataset. We then compare
the reconstructed values to the actual value of each insertion.

Synthetic data. In Figure 6, we evaluate the accuracy of the
approximate insert order reconstruction on synthetic data.
Each dataset contains n = 1000000 insertions sampled
uniformly at random from a given domain using an equiva-
lent uniform distribution as the auxiliary information. Each
experiment uses numerical values from different domain
sizes D and with different maximum encoding size max(s)
to investigate how the accuracy of the attack is affected by
the size of the domain as well as the number of values that
could fit into each B+-tree page.

We report exact recovery % (ERecov%, the percent
of insertions with correctly guessed values) and average
absolute error as a % of the domain size (AvgAbsErr%, the
absolute difference between the guessed and actual value,
divided by the domain size). For ERecov%, we additionally
include an advantage (Ad) comparison recently introduced
by Espiritu, Kamara, and Moataz [50] as a method for
evaluating attacks that use auxiliary information.8 The Ad
for ERecov% is the absolute difference between LEAF-
BLOWER’s ERecov% to the ERecov% of a “naive” adver-
sary who guesses based on the same auxiliary information
A. This verifies that the attack learns more information than
what A tells us. We define the naive adversary as the adver-
sary which guesses the value of each operation by sampling
from A and report the average ERecov% from running
the naive adversary 10,000 times. Additionally, we report
Spearman’s rank correlation coefficient (−1 ≤ rs ≤ 1) [132]
between the guessed and actual values for each operation. rs

7. In Figure 9 in the Appendix, we discuss further results on synthetic
data where we increase the page size P as a potential attack mitigation.

8. [50] does not define an equivalent notion of Ad for AvgAbsErr%, so
the Ad column is blank in AvgAbsErr% rows. Future work may come up
with other advantage-like notions that can capture these types of metrics.

Uniform: 1 Byte INT 2 Byte INT 4 Byte INT 8 Byte INT 16 Digit STRING
1 As the domain size D increases, ERecov%

decreases, but AvgAbsError% remains small as
long as our auxiliary information is accurate.

2 AvgAbsError% decreases as the byte size s
increases, as larger s means less keys are stored in
each node (which reduces noise in order recov.).

3 Our attack has best ERecov% on small D—
we achieve positive Ad over the NV baseline
(which achieves 0% ERecov% in most cases).

4 Even when D is large, AvgAbsErr% is lower
on later inserts (e.g. Q4) compared to earlier (e.g.
Q1). LB’s reconstruction gets better later in the
transcript since LB recovers better ordering infor-
mation when the # of leaves in the B+-tree is larger
(compared to early insertions which get inserted
into the same few nodes). The graphs also indicate
later inserts (yellow points) are more accurately
ordered than early inserts (purple). In comparison,
NV’s AvgAbsErr% remains constant at 33%.

5 The Spearman correlation rs (see Section 6)
is always close to 1. This indicates accurate order
reconstruction (independent of the value recovery).

D = 2
8

2
16

2
32

2
64

10
16

max(s) = 1 2 4 8 16

G
ue

ss
vs

A
ct

ua
l

Va
lu

e
(d

ia
go

na
l

is
pe

rf
ec

t
gu

es
s)

E
rr

or
vs

Tr
an

sc
ri

pt
In

de
x

(m
id

lin
e

is
0

er
ro

r)

LB NV Ad LB NV Ad LB NV Ad LB NV Ad LB NV Ad

ERecov%
(higher
better)

Q1 14 0.4 13 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Q2 38 0.4 37 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Q3 64 0.4 63 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Q4 88 0.4 87 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

AvgAbs
Err%

(low better)

Q1 5.4 33 6.6 33 5.9 33 4.7 33 4.6 33
Q2 0.2 33 1.0 33 0.8 33 0.6 33 0.6 33
Q3 0.1 33 0.4 33 0.3 33 0.3 33 0.2 33
Q4 0.0 33 0.3 33 0.2 33 0.2 33 0.1 33

rs = 0.977 0.978 0.980 0.985 0.986

Figure 6: Evaluation and commentary on synthetic datasets (where n = 1000000). LB is LEAFBLOWER; NV is the naive baseline. (For visual clarity, the
scatter plots are downsampled to every 100th point.)

Amazon: Industrial Software
1 When cdfA is

close to the CDF of
the real data, ERe-
cov% Adv increases
from Q1 to Q4. This
follows our synthetic
results from Figure 6,
where we had accurate

A by design...

2 ...but when A
is off (shown in the
ECDF graph), LB has
decreasing ERecov%
from Q1 to Q4 since
as the order recovery
gets better, the value
recovery shifts more
away from the real
CDF. This stresses
that LB can decline
if “inaccurate” A is
chosen. Even so, LB’s
ERecov% Adv is
good as long as the

shape of A is close.

D = 5 5
n = 412947 1276840

max(s) = 1 1

Aux (A) Table 2 from [73]

E
rr

or
vs

Tr
an

sc
ri

pt
In

de
x

(d
ot

s
=

0
er

ro
r)

E
C

D
F

(s
ol

id
=

re
al

C
D

F
;

da
sh

=
au

x
C

D
F

)

E
R

ec
ov

%
(h

ig
he

r
be

tte
r) LB NV Ad LB NV Ad

Q1 82 54 28 80 43 37
Q2 97 54 43 66 43 23
Q3 99 54 45 61 43 18
Q4 100 54 46 58 43 15

Figure 7: Evaluation on 2023 Amazon review data [71], [72].

measures the monotonicity between pairs of two variables.
rs = 0 indicates there is no correlation while rs = 1
or rs = −1 means the variables are perfectly monotone.
We use this to independently evaluate the correctness of
the order reconstruction portion of the attack. Finally, we
report the above metrics independently on each quarter
of the transcript index (e.g. Q1 corresponds to the metric

calculated on the first 25% of the insertions; Q2 corresponds
to the second 25% of the insertions, etc.). We use this to
highlight an interesting behavior of our attack—the order
reconstruction (and thus, the value reconstruction when A
is accurate) improves for later operations in the transcript.

Interpretation of the synthetic results is in Figure 6.
Our accuracy improves for later operations in the transcript
compared to earlier operations. Also, when the auxiliary A
is very close to the real CDF and when the domain size D
is small, we can achieve a good ERecov% rate. Even when
D is large, our AvgAbsErr% is consistent.

Real datasets. We now evaluate LEAFBLOWER against
indexed attributes from two real-world datasets.9 Based on
our findings from Figure 6, we primarily focus on attributes
with small domain size to highlight cases where the exact
recovery of the attack performs well. First, in Figure 7, we
use star ratings from two different categories of Amazon
products from a 2023 dataset [71], [72]. As auxiliary in-
formation, we directly use a histogram from a 2009 article
by Hu, Zhang, and Pavlou on the distributions of online
product reviews (Table 2 in [73]). While unconventional,
this experiment is useful for two reasons. First, it highlights
that the LEAFBLOWER attack only requires a CDF and
not concrete records. Second, while the accuracy improves
in the Industrial dataset for later insertions (as in the

9. Our experiments do not attempt to reconstruct information that was
not already in publicly available datasets. We intentionally chose datasets
that did not require any payment, required at most an online request form
to access, and whose download and parsing could be mostly automated.

Texas PUDF: Ethnicity Sex Race Length of Stay
1 As in Figure 7, when the auxiliary A is close to the real CDF, we

achieve increasingly higher ERecov% later in the transcript.

2 As in Figure 7, when A is off, our guesses are shifted away
from the real CDF causing ERecov% to decrease. This emphasizes
the importance of choosing “good” A—otherwise, the performance of

the attack degrades.

D = 3 3 5 365

Aux (A) Texas Census QuickFacts [144] NY SPARCS [116]

E
R

ec
ov

%
(h

ig
he

r
be

tte
r) LB NV Ad LB NV Ad LB NV Ad LB NV Ad

Q1 84 53 31 99 50 49 45 54 −9 70 13 57
Q2 100 53 47 100 50 50 73 54 19 83 13 70
Q3 100 53 47 100 50 50 85 54 31 74 13 61
Q4 100 53 47 66 50 16 93 54 39 51 13 38

Figure 8: Evaluation on attributes from the 2018 Texas PUDF [142].

experiments in Figure 6), the Software dataset’s accuracy
actually decreases for later insertions. This is because the
choice of auxiliary is not quite correct—this can be seen by
comparing the ECDF of the real dataset to that of the aux-
iliary. This serves to emphasize the importance of accurate
auxiliary information for the value reconstruction portion of
the attack (as commonly stressed in prior work [19], [50],
[52], [114]). Nevertheless, even when the auxiliary is off,
LEAFBLOWER’s advantage is better than that of the naive
baseline for the reported metrics.

To demonstrate that our attack works on sensitive and
categorical data, in Figure 8, we use records from the
2018 Texas Hospital Inpatient Discharges dataset [142]. This
dataset contains approximately 700k records about hospital
discharges from 2018. As auxiliary for some columns, we
use histogram information from the United States Census
Bureau’s Texas Census QuickFacts publication from April
2025 [144]. In one case, where information is not available
in QuickFacts, we use records from the New York SPARCS
2022 dataset [116] of hospital discharges in New York. We
omit error and ECDF graphs for space, but the shape of the
graphs follows patterns similar to those in Figure 7.

7. Possible Mitigations
Recommendations for ESE. For ESEs like SQLC and
S3MC, our recommendation is to clarify in the adversarial
threat model that such mechanisms are meant for adversaries
that can only observe some fixed number of snapshots
(smaller than the number of insertions) and do not provide
strong confidentiality guarantees against multi-snapshot ad-
versaries. A more long-term mitigation would be to explore
write-only oblivious RAM techniques (e.g. [13], [21], [31],
[34]) which are more efficient than general oblivious RAM
(ORAM) [60] as they only hide writes. Another approach
would be to use breach-resistant STE schemes (e.g. [7],
[81], [120]) that are resilient to multi-snapshot adversaries.
One potential roadblock with using state-of-the-art breach-
resistant STE schemes (and most STE schemes in general) is
that they do not directly handle concurrent write operations
which is an explicit requirement for many practical database
storage engines—combining breach-resistance with tech-
niques from an emerging line of work on concurrency in
STE might close this practical gap [2], [3], [4], [27], [81].

Recommendations for TEEs. Mitigations for TEEs are
tricker since the usual adversarial models are even more

powerful than the multi-snapshot setting. ORAM [60] has
already been used in TEEs to hide access patterns to memory
pages [1], [36], [45] and within filesystem syscalls [6], [41].
Our work provides more evidence supporting the use of
such techniques. However, the Ω(log n) bandwidth lower-
bound of ORAM [94] introduces additional overhead which
may not be appropriate for the setting of online transactional
databases. Snapshot-secure ORAMs [46] are also appropri-
ate for this setting, but recent lower-bounds by Persiano and
Yeo suggest this may be nearly as hard as in the persistent
setting for adversaries that receive multiple snapshots [120].

Remark. Our mitigation recommendations introduce addi-
tional cryptographic primitives, but one could attempt to
mitigate the attack by breaking the some of the struc-
tural properties we exploit. For example, Lemma 5.3 and
Lemma 5.6 could be broken by randomizing the order of
nodes when multiple nodes are added in a single operation.
It is not clear if such an approach is robust enough to
prevent leaf order recovery—early in the development of this
work, we found that we could also use PQ-trees [23] (which
were previously used to attack encrypted range search ESAs
in the persistent model in Grubbs, Lacharité, Minaud, and
Paterson [64] and Markatou and Tamassia [106]) to recover
the order of the B+-tree leaf nodes (even though this ended
up being more complicated than needed in our final attack).
We stress that all the mitigations mentioned above introduce
additional overhead and assessing their impact on existing
workloads would be a valuable area of further research.

8. Conclusions and Future Work
In this paper, we show a concrete attack against TEE-

based EDBs (and more broadly, PLE modules) that lever-
ages a multi-snapshot external memory adversary model that
has not been explored in depth in prior work. Our work
makes the following points: (1) since persistent databases
must eventually write data to disk, the filesystem is a vector
for side-channel attacks against TEE-based EDBs; and (2)
while it may be unsurprising that filesystem writes leak
something, it is surprising (and novel) how much you can
recover from just them. This work is intended to be a first
step to motivate further study of multi-snapshot adversaries
(and other weaker adversaries) when designing TEE-based
EDBs and ESEs, and, more broadly, spur investigation of
PLE modules with stronger multi-snapshot guarantees. We
discuss additional directions for future work below.

Less snapshots and deletions. The main limitation of our
attack is that it currently only works in the n-snapshot
setting where the adversary receives a snapshot after each of
the n insertions. Another open question is what knowledge
can be extracted in the s-snapshot setting, where s < n, as
an adversary obtains s snapshots throughout the n insertions.
Another limitation of our work is the assumption that the
workload consists solely of insertions, without accounting
for deletions. We leave this for future research.

Multi-index SQLite tables. We focused on the single-
index scenario to provide a baseline for what is possible
for to reconstruct under “simple” conditions (and, as dis-
cussed in Appendix A, can already be used to attack non-
SQLite databases with multiple indexes). A natural follow-
up is to consider SQLite tables with multiple indexes. This
substantially increases the complexity of the disambiguation
problem from Section 5.1. Even so, we conjecture one can
use rebalances to constrain which nodes can appear in the
same tree, albeit with less guarantees about correctness.

Other index structures. SQLite provides interfaces
for more expressive persistent index structures such as
R∗-trees [17] for multi-dimensional search [139]. Such in-
dexes are also supported by third-party database plugins
like SpatiaLite [56] as well as in other databases like Post-
GIS [121]. Similar attacks in the multi-snapshot model may
be possible not just on these indexes but also other key-
value storage engine structures such as log-structured merge
(LSM) trees [118] (as used in, e.g. BigTable [32], Cassandra
[93], DynamoDB [48], and RocksDB [44]).

Acknowledgments

We thank Shweta Shinde for helpful conversations about
TEEs and Marilyn George and Casey Nelson for feedback
on early drafts. We also thank the developers of all soft-
ware involved in the disclosure process for their feedback.
In particular, the developers of SQLCipher and SQLite3
Multiple Ciphers gave very helpful and detailed suggestions
that helped us improve the presentation of this work. This
research received no specific grant from any funding agency
in the public, commercial, or not-for-profit sectors.

References

[1] S. Aga and S. Narayanasamy, “InvisiPage: oblivious demand paging
for secure enclaves,” in Proc. 46th ISCA, 2019.

[2] A. Agarwal and Z. Espiritu, “Sequentially Consistent Concurrent
Encrypted Multimaps,” in Proc. 10th IEEE Euro. S&P, 2025.

[3] A. Agarwal and S. Kamara, “Encrypted Key-Value Stores,” in IN-
DOCRYPT 2020, 2020.

[4] A. Agarwal, S. Kamara, and T. Moataz, “Concurrent Encrypted
Multimaps,” in ASIACRYPT 2024, 2024.

[5] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu, “Order preserving
encryption for numeric data,” in Proc. 2004 ACM SIGMOD, 2004.

[6] A. Ahmad, K. Kim, M. I. Sarfaraz, and B. Lee, “OBLIVIATE: A
Data Oblivious Filesystem for Intel SGX,” in Proc. 2018 NDSS,
2018.

[7] G. Amjad, S. Kamara, and T. Moataz, “Breach-Resistant Structured
Encryption,” Proc. PETS, vol. 2019, no. 1, 2019.

[8] Anjuna Security. (2025). [Online]. Available: https://www.anjuna.io/

[9] P. Antonopoulos, A. Arasu, K. D. Singh, K. Eguro, N. Gupta,
R. Jain, R. Kaushik, H. Kodavalla, D. Kossmann, N. Ogg, R. Rama-
murthy, J. Szymaszek, J. Trimmer, K. Vaswani, R. Venkatesan, and
M. Zwilling, “Azure SQL Database Always Encrypted,” in Proc.
2020 ACM SIGMOD, 2020.

[10] P. Antonopoulos, A. Budovski, C. Diaconu, A. Hernandez Saenz,
J. Hu, H. Kodavalla, D. Kossmann, S. Lingam, U. F. Minhas,
N. Prakash, V. Purohit, H. Qu, C. S. Ravella, K. Reisteter, S. Shrotri,
D. Tang, and V. Wakade, “Socrates: The New SQL Server in the
Cloud,” in Proc. 2019 ACM SIGMOD, 2019.

[11] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin,
C. Priebe, J. Lind, D. Muthukumaran, D. O’Keeffe, M. L. Stillwell,
D. Goltzsche, D. Eyers, R. Kapitza, P. Pietzuch, and C. Fetzer,
“SCONE: Secure Linux Containers with Intel SGX,” in Proc. 12th
USENIX OSDI, 2016.

[12] Asylo. (2018). [Online]. Available: https://asylo.dev/

[13] A. J. Aviv, S. G. Choi, T. Mayberry, and D. S. Roche, “ObliviSync:
Practical Oblivious File Backup and Synchronization,” in Proc. 2017
NDSS, 2017.

[14] S. Bajaj and R. Sion, “TrustedDB: A Trusted Hardware-Based
Database with Privacy and Data Confidentiality,” IEEE Trans.
Knowl. and Data Eng., vol. 26, no. 3, 2014.

[15] A. Baumann, M. Peinado, and G. Hunt, “Shielding Applications
from an Untrusted Cloud with Haven,” ACM Trans. Comp. Syst.,
vol. 33, no. 3, 2015.

[16] R. Bayer and E. M. McCreight, “Organization and maintenance of
large ordered indices,” in Proc. 1970 ACM SIGFIDET Workshop
Data Desc. Acc. and Cont., 1970.

[17] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, “The R*-
tree: an efficient and robust access method for points and rectangles,”
ACM SIGMOD Record, vol. 19, no. 2, 1990.

[18] M. Bellare, A. Boldyreva, and A. O’Neill, “Deterministic and Effi-
ciently Searchable Encryption,” in CRYPTO 2007, 2007.

[19] V. Bindschaedler, P. Grubbs, D. Cash, T. Ristenpart, and
V. Shmatikov, “The tao of inference in privacy-protected databases,”
Proc. VLDB Endow., vol. 11, no. 11, 2018.

[20] L. Blackstone, S. Kamara, and T. Moataz, “Revisiting Leakage
Abuse Attacks,” in Proc. 2020 NDSS, 2020.

[21] E.-O. Blass, T. Mayberry, G. Noubir, and K. Onarlioglu, “Toward
Robust Hidden Volumes Using Write-Only Oblivious RAM,” in
Proc. 2014 ACM CCS, 2014.

[22] A. Boldyreva, N. Chenette, and A. O’Neill, “Order-preserving en-
cryption revisited: Improved security analysis and alternative solu-
tions,” in CRYPTO 2011, 2011.

[23] K. S. Booth and G. S. Lueker, “Testing for the consecutive ones
property, interval graphs, and graph planarity using PQ-tree algo-
rithms,” J. Comp. and Sys. Sci., vol. 13, no. 3, 1976.

[24] B. Bourassa, Y. Michalevsky, and S. Eskandarian, “G-DBREACH
Attacks: Algorithmic Techniques for Faster and Stronger Compres-
sion Side Channels,” in Proc. ACNS, 2025.

[25] M. Brantner, D. Florescu, D. Graf, D. Kossmann, and T. Kraska,
“Building a database on S3,” in Proc. 2008 ACM SIGMOD, 2008.

[26] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen, S. Capkun, and
A.-R. Sadeghi, “Software Grand Exposure: SGX Cache Attacks Are
Practical,” in Proc. 11th USENIX WOOT, 2017.

[27] T. Brézot and C. Hébant, “Findex: A Concurrent and Database-
Independent Searchable Encryption Scheme,” Cryptology ePrint
Archive, Paper 2024/1541, 2024.

[28] R. Buhren, H.-N. Jacob, T. Krachenfels, and J.-P. Seifert, “One
Glitch to Rule Them All: Fault Injection Attacks Against AMD’s
Secure Encrypted Virtualization,” in Proc. 2021 ACM CCS, 2021.

[29] J. V. Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci,
F. Piessens, M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx,
“Foreshadow: Extracting the Keys to the Intel SGX Kingdom with
Transient Out-of-Order Execution,” in Proc. 27th USENIX Sec.,
2018.

[30] J. V. Bulck, N. Weichbrodt, R. Kapitza, F. Piessens, and R. Strackx,
“Telling Your Secrets without Page Faults: Stealthy Page Table-
Based Attacks on Enclaved Execution,” in Proc. 26th USENIX Sec.,
2017.

[31] A. Chakraborti, C. Chen, and R. Sion, “DataLair: Efficient Block
Storage with Plausible Deniability against Multi-Snapshot Adver-
saries,” Proc. PETS, vol. 2017, no. 3, 2017.

[32] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable:
A Distributed Storage System for Structured Data,” ACM Trans.
Comp. Syst., vol. 26, no. 2, 2008.

[33] M. Chase and S. Kamara, “Structured Encryption and Controlled
Disclosure,” in ASIACRYPT 2010, 2010.

[34] C. Chen, A. Chakraborti, and R. Sion, “PD-DM: An efficient
locality-preserving block device mapper with plausible deniability,”
Proc. PETS, vol. 2019, no. 1, 2019.

[35] P.-C. Cheng, W. Ozga, E. Valdez, S. Ahmed, Z. Gu, H. Jamjoom,
H. Franke, and J. Bottomley, “Intel TDX Demystified: A Top-Down
Approach,” ACM Comp. Surv., vol. 56, no. 9, 2024.

[36] V. Costan, I. Lebedev, and S. Devadas, “Sanctum: Minimal Hard-
ware Extensions for Strong Software Isolation,” in Proc. 25th
USENIX Sec., 2016.

[37] ——, “Secure Processors Part II: Intel SGX Security Analysis
and MIT Sanctum Architecture,” Found. Trends Elec. Des. Autom.,
vol. 11, no. 3, 2017.

[38] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Searchable
Symmetric Encryption: Improved Definitions and Efficient Con-
structions,” in Proc. 13th ACM CCS, 2006.

[39] F. Dall, G. De Micheli, T. Eisenbarth, D. Genkin, N. Heninger,
A. Moghimi, and Y. Yarom, “CacheQuote: Efficiently Recovering
Long-term Secrets of SGX EPID via Cache Attacks,” IACR Trans.
CHES, vol. 2018, 2018.

[40] C. Dar, M. Hershcovitch, and A. Morrison, “RLS Side Channels: In-
vestigating Leakage of Row-Level Security Protected Data Through
Query Execution Time,” Proc. 2023 ACM SIGMOD, 2023.

[41] E. Dauterman, V. Fang, I. Demertzis, N. Crooks, and R. A. Popa,
“Snoopy: Surpassing the Scalability Bottleneck of Oblivious Stor-
age,” in Proc. ACM SIGOPS 28th SOSP, 2021.

[42] Decentriq. (2025). [Online]. Available: https://www.decentriq.com/

[43] A. Depoutovitch, C. Chen, J. Chen, P. Larson, S. Lin, J. Ng, W. Cui,
Q. Liu, W. Huang, Y. Xiao, and Y. He, “Taurus Database: How to
be Fast, Available, and Frugal in the Cloud,” in Proc. 2020 ACM
SIGMOD, 2020.

[44] S. Dong, A. Kryczka, Y. Jin, and M. Stumm, “RocksDB: Evolution
of Development Priorities in a Key-value Store Serving Large-scale
Applications,” ACM Trans. Storage, vol. 17, no. 4, 2021.

[45] X. Dong, Z. Shen, J. Criswell, A. L. Cox, and S. Dwarkadas,
“Shielding software from privileged Side-Channel attacks,” in Proc.
27th USENIX Sec., 2018.

[46] Y. Du, D. Genkin, and P. Grubbs, “Snapshot-Oblivious RAMs: Sub-
logarithmic Efficiency for Short Transcripts,” in CRYPTO 2022,
2022.

[47] F. B. Durak, T. M. DuBuisson, and D. Cash, “What else is revealed
by order-revealing encryption?” in Proc. 2016 ACM CCS, 2016.

[48] M. Elhemali, N. Gallagher, N. Gordon, J. Idziorek, R. Krog,
C. Lazier, E. Mo, A. Mritunjai, S. Perianayagam, T. Rath, S. Siva-
subramanian, J. C. Sorenson III, S. Sosothikul, D. Terry, and A. Vig,
“Amazon DynamoDB: A Scalable, Predictably Performant, and
Fully Managed NoSQL Database Service,” in Proc. 2022 USENIX
ATC, 2022.

[49] P. Embrechts and M. Hofert, “A note on generalized inverses,” Math.
Meth. Ops. Research, vol. 77, no. 3, 2013.

[50] Z. Espiritu, S. Kamara, and T. Moataz, “Bayesian Leakage Analy-
sis,” IACR Comm. Crypto., vol. 2, no. 1, 2025.

[51] Z. Espiritu, S. Kamara, T. Moataz, and V. Ogier, “Artifact for
“Leafblower: a Leakage Attack Against TEE-Based Encrypted
Databases”,” 2025. [Online]. Available: https://doi.org/10.5281/
zenodo.17114340

[52] Z. Espiritu, S. Kamara, T. Moataz, and A. Park, “PolySys: an
Algebraic Leakage Attack Engine,” in Proc. 34th USENIX Sec.,
2025.

[53] F. Falzon, E. A. Markatou, Akshima, D. Cash, A. Rivkin, J. Stern,
and R. Tamassia, “Full Database Reconstruction in Two Dimen-
sions,” in Proc. 2020 ACM CCS, 2020.

[54] F. Falzon, E. A. Markatou, Z. Espiritu, and R. Tamassia, “Range
search over encrypted multi-attribute data,” Proc. VLDB Endow.,
vol. 16, no. 4, 2022.

[55] Fortanix. (2025). [Online]. Available: https://www.fortanix.com/

[56] A. Furieri. (2025) SpatiaLite. [Online]. Available: https://www.
gaia-gis.it/fossil/libspatialite/index

[57] A. Futoransky, D. Saura, and A. Waissbein, “The ND2DB attack:
Database content extraction using timing attacks on the indexing
algorithms,” in Proc. 1st USENIX WOOT, 2007.

[58] A. Fábrega, C. O. Pérez, A. Namavari, B. Nassi, R. Agarwal,
and T. Ristenpart, “Injection Attacks Against End-to-End Encrypted
Applications,” in Proc. 2024 IEEE S&P, 2024.

[59] K. P. Gaffney, M. Prammer, L. Brasfield, D. R. Hipp, D. Kennedy,
and J. M. Patel, “SQLite: past, present, and future,” Proc. VLDB
Endow., vol. 15, no. 12, 2022.

[60] O. Goldreich and R. Ostrovsky, “Software protection and simulation
on oblivious RAMs,” J. ACM, vol. 43, no. 3, 1996.

[61] Gramine Authors, “Gramine,” 2024. [Online]. Available: https:
//gramine.readthedocs.io

[62] ——, “get_node_numbers routine: Gramine v1.8,” 2024,
SWHID: swh:1:cnt:2fbac44c1f6146b9285278023bd1f78550cb4d25
;origin=https://github.com/gramineproject/gramine;visit=swh:1:snp:
3d9d3753a5c0231ee393f9de6192bb3053f7f513;anchor=swh:1:rev:4
629f068f68d2821607c6dc8d5d7502e0b2ab79a;path=/common/src/p
rotected files/protected files.c;lines=335-377.

[63] P. Grubbs, M.-S. Lacharite, B. Minaud, and K. G. Paterson, “Pump
up the Volume: Practical Database Reconstruction from Volume
Leakage on Range Queries,” in Proc. 2018 ACM CCS, 2018.

[64] P. Grubbs, M.-S. Lacharité, B. Minaud, and K. G. Paterson, “Learn-
ing to Reconstruct: Statistical Learning Theory and Encrypted
Database Attacks,” in Proc. 2019 IEEE S&P, 2019.

[65] P. Grubbs, T. Ristenpart, and V. Shmatikov, “Why Your Encrypted
Database Is Not Secure,” in Proc. 16th Workshop HotOS, 2017.

[66] P. Grubbs, K. Sekniqi, V. Bindschaedler, M. Naveed, and T. Risten-
part, “Leakage-Abuse Attacks against Order-Revealing Encryption,”
in Proc. 2017 IEEE S&P, 2017.

[67] Z. Gui, O. Johnson, and B. Warinschi, “Encrypted Databases: New
Volume Attacks against Range Queries,” in Proc. 2019 ACM CCS,
2019.

[68] J. Götzfried, M. Eckert, S. Schinzel, and T. Müller, “Cache Attacks
on Intel SGX,” in Proc. 10th Euro. Workshop Sys. Sec., 2017.

[69] D. R. Hipp. (2025) Most Widely Deployed SQL Database Engine.
[Online]. Available: https://www.sqlite.org/mostdeployed.html

[70] M. Hogan, Y. Michalevsky, and S. Eskandarian, “DBREACH: Steal-
ing from Databases Using Compression Side Channels,” in Proc.
2023 IEEE S&P, 2023.

[71] Y. Hou, J. Li, Z. He, A. Yan, X. Chen, and J. McAuley, “Amazon
reviews 2023: Video games 5-core,” 2024. [Online]. Available:
https://amazon-reviews-2023.github.io/data processing/5core.html

[72] ——, “Bridging language and items for retrieval and recommenda-
tion,” 2024, arXiv:2403.03952 [cs.IR].

[73] N. Hu, J. Zhang, and P. A. Pavlou, “Overcoming the J-shaped
distribution of product reviews,” Comm. ACM, vol. 52, no. 10, 2009.

[74] T. IEEE and T. O. Group. (2024) The Open Group Base
Specifications Issue 8: fsync. [Online]. Available: https://pubs.
opengroup.org/onlinepubs/9799919799/functions/fsync.html

[75] Intel, “Intel Software Guard Extensions (Intel® SGX) SDK for
Linux OS 2.23,” Intel, Tech. Rep., 2024. [Online]. Avail-
able: https://download.01.org/intel-sgx/sgx-linux/2.23/docs/Intel
SGX Developer Reference Linux 2.23 Open Source.pdf

[76] G. Irazoqui, T. Eisenbarth, and B. Sunar, “S$A: A Shared Cache
Attack That Works across Cores and Defies VM Sandboxing – and
Its Application to AES,” in Proc. 2015 IEEE S&P, 2015.

[77] M. S. Islam, M. Kuzu, and M. Kantarcioglu, “Access Pattern Dis-
closure on Searchable Encryption: Ramification, Attack and Mitiga-
tion,” in Proc. 2012 NDSS, 2012.

[78] Q. Jiang and C. Wang, “Sync+Sync: A Covert Channel Built on
fsync with Storage,” in Proc. 33rd USENIX Sec., 2024.

[79] M. Jurado and G. Smith, “Quantifying information leakage of de-
terministic encryption,” in Proc. 2019 ACM CCSW, 2019.

[80] S. Kamara, A. Kati, T. Moataz, T. Schneider, A. Treiber, and
M. Yonli, “SoK: Cryptanalysis of Encrypted Search with LEAKER
– A framework for LEakage AttacK Evaluation on Real-world data,”
in Proc. 2022 IEEE 7th Euro. S&P, 2022.

[81] S. Kamara and T. Moataz, “Design and Analysis of a Stateless Doc-
ument Database Encryption Scheme,” MongoDB, Tech. Rep., 2023.
[Online]. Available: https://www.mongodb.com/resources/products/
capabilities/stateless-document-database-encryption-scheme

[82] D. Kaplan, J. Powell, and T. Woller, “AMD Memory Encryption,”
AMD, Tech. Rep., 2021. [Online]. Available: https://www.amd.com/
content/dam/amd/en/documents/epyc-business-docs/white-papers/
memory-encryption-white-paper.pdf

[83] A. Kaufman, M. Hershcovitch, and A. Morrison, “Prefix siphoning:
Exploiting LSM-Tree range filters for information disclosure,” in
Proc. 2023 USENIX ATC, 2023.

[84] G. Kellaris, G. Kollios, K. Nissim, and A. O’Neill, “Generic Attacks
on Secure Outsourced Databases,” in Proc. 2016 ACM CCS, 2016.

[85] S. Khan, I. Kabanov, Y. Hua, and S. Madnick, “A systematic analysis
of the capital one data breach: Critical lessons learned,” ACM TOPS,
vol. 26, no. 1, Nov. 2022.

[86] D. E. Knuth, The art of computer programming, volume 3: (2nd ed.)
sorting and searching. Addison-Wesley Longman, 1998.

[87] E. M. Kornaropoulos, N. Moyer, C. Papamanthou, and A. Psomas,
“Leakage inversion,” in Proc. 2022 ACM CCS, 2022.

[88] E. M. Kornaropoulos, C. Papamanthou, and R. Tamassia, “The
State of the Uniform: Attacks on Encrypted Databases Beyond the
Uniform Query Distribution,” in Proc. 2020 IEEE S&P, 2020.

[89] ——, “Response-Hiding Encrypted Ranges: Revisiting Security via
Parametrized Leakage-Abuse Attacks,” in Proc. 2021 IEEE S&P,
2021.

[90] M. Kowalczyk, D. Kuvaiskii, P. Marczewski, B. Popławski, W. Por-
czyk, D. E. Porter, K. Qin, C.-C. Tsai, M. Vij, and I. Yama-
hata, “Rapid Deployment of Confidential Cloud Applications with
Gramine,” in Proc. 40th ACSAC, 2024.

[91] M.-S. Lacharité, B. Minaud, and K. G. Paterson, “Improved Recon-
struction Attacks on Encrypted Data Using Range Query Leakage,”
in 2018 IEEE S&P, 2018.

[92] M.-S. Lacharité and K. G. Paterson, “A note on the optimality of
frequency analysis vs. ℓp-optimization,” Cryptology ePrint Archive,
Paper 2015/1158, 2015.

[93] A. Lakshman and P. Malik, “Cassandra: a decentralized structured
storage system,” ACM SIGOPS OS Rev., vol. 44, no. 2, 2010.

[94] K. G. Larsen and J. B. Nielsen, “Yes, there is an oblivious ram lower
bound!” in CRYPTO 2018, 2018.

[95] D. Lee, D. Kohlbrenner, S. Shinde, K. Asanović, and D. Song,
“Keystone: an open framework for architecting trusted execution
environments,” in Proc. 15th Euro. Conf. Comp. Sys., 2020.

[96] F. Li, “Cloud-native database systems at Alibaba: opportunities and
challenges,” Proc. VLDB Endow., vol. 12, no. 12, 2019.

[97] M. Li, L. Wilke, J. Wichelmann, T. Eisenbarth, R. Teodorescu, and
Y. Zhang, “A Systematic Look at Ciphertext Side Channels on AMD
SEV-SNP,” in Proc. 2022 IEEE S&P, May 2022.

[98] M. Li, Y. Zhang, H. Wang, K. Li, and Y. Cheng, “CIPHERLEAKS:
Breaking Constant-time Cryptography on AMD SEV via the Ci-
phertext Side Channel,” in Proc. 30th USENIX Sec., 2021.

[99] ——, “TLB Poisoning Attacks on AMD Secure Encrypted Virtual-
ization,” in Proc. 37th ACSAC, 2021.

[100] M. Li, X. Zhao, L. Chen, C. Tan, H. Li, S. Wang, Z. Mi, Y. Xia, F. Li,
and H. Chen, “Encrypted Databases Made Secure Yet Maintainable,”
in Proc. 17th USENIX OSDI, 2023.

[101] S. Lin, A. P. Marathe, P. Larson, C. Chen, C. Sun, P. Lee, W. Yu,
J. Li, J. Meng, R. Lin, X. Chenxi, and Q. Zhuxii, “Near Data
Processing in Taurus Database,” in Proc. 2022 IEEE ICDE, 2022.

[102] M. Lipp, V. Hadžić, M. Schwarz, A. Perais, C. Maurice, and
D. Gruss, “Take A Way: Exploring the Security Implications of
AMD’s Cache Way Predictors,” in Proc. 15th ACM Asia CCS, 2020.

[103] F. Liu, Y. Yarom, Q. Ge, G. Heiser, and R. B. Lee, “Last-Level Cache
Side-Channel Attacks are Practical,” in Proc. 2015 IEEE S&P, 2015.

[104] E. A. Markatou, F. Falzon, Z. Espiritu, and R. Tamassia, “Attacks
on encrypted response-hiding range search schemes in multiple
dimensions,” Proc. PETS, vol. 2023, no. 1, 2023.

[105] E. A. Markatou, F. Falzon, R. Tamassia, and W. Schor, “Recon-
structing with less: Leakage abuse attacks in two dimensions,” in
Proc. 2021 ACM CCS, 2021.

[106] E. A. Markatou and R. Tamassia, “Full Database Reconstruction
with Access and Search Pattern Leakage,” in Info. Sec., 2019.

[107] ——, “Reconstructing with Even Less: Amplifying Leakage and
Drawing Graphs,” in Proc. 2024 ACM CCS, 2024.

[108] Microsoft. (2024) Transparent data encryption (TDE).
[Online]. Available: https://learn.microsoft.com/en-us/sql/
relational-databases/security/encryption/transparent-data-encryption

[109] A. Moghimi, G. Irazoqui, and T. Eisenbarth, “CacheZoom: How
SGX Amplifies the Power of Cache Attacks,” in CHES 2017, 2017.

[110] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and P. Schwarz,
“ARIES: a transaction recovery method supporting fine-granularity
locking and partial rollbacks using write-ahead logging,” ACM
Trans. Database Syst., vol. 17, no. 1, 1992.

[111] MongoDB. (2025) Encryption at Rest. [Online]. Available: https:
//www.mongodb.com/docs/manual/core/security-encryption-at-rest/

[112] A. Muñoz, R. Rı́os, R. Román, and J. López, “A survey on the
(in)security of trusted execution environments,” Comp. & Sec., vol.
129, 2023.

[113] MySQL. (2025) The InnoDB Storage Engine.
[Online]. Available: https://dev.mysql.com/doc/refman/8.4/en/
innodb-storage-engine.html

[114] M. Naveed, S. Kamara, and C. V. Wright, “Inference Attacks on
Property-Preserving Encrypted Databases,” in Proc. 22nd ACM CCS,
2015.

[115] Neon. (2025). [Online]. Available: https://neon.tech/

[116] New York Office of Health Services Quality and Analytics,
“Hospital Inpatient Discharges (SPARCS De-Identified): 2022,”
2024. [Online]. Available: https://health.data.ny.gov/d/5dtw-tffi

[117] B. Ngabonziza, D. Martin, A. Bailey, H. Cho, and S. Martin,
“TrustZone Explained: Architectural Features and Use Cases,” in
2016 IEEE Intl. Conf. CIC, 2016.

[118] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil, “The log-structured
merge-tree (LSM-tree),” Acta Informatica, vol. 33, no. 4, 1996.

[119] J. Pei and V. Shmatikov, “Bigfoot: Exploiting and mitigating leakage
in encrypted write-ahead logs,” 2021, arXiv:2111.09374 [cs.CR].

[120] G. Persiano and K. Yeo, “Limits of Breach-Resistant and Snapshot-
Oblivious RAMs,” in CRYPTO 2023, 2023.

[121] PostGIS. (2023). [Online]. Available: https://postgis.net/

[122] PostgreSQL. (2025). [Online]. Available: https://postgresql.org

[123] C. Priebe, K. Vaswani, and M. Costa, “EnclaveDB: A Secure
Database Using SGX,” in Proc. 2018 IEEE S&P, 2018.

[124] B. Schlüter, C. Wech, and S. Shinde, “Heracles: Chosen Plaintext
Attack on AMD SEV-SNP,” in Proc. 2025 ACM CCS, 2025.

[125] M. Schwarz, M. Lipp, D. Moghimi, J. Van Bulck, J. Stecklina,
T. Prescher, and D. Gruss, “ZombieLoad: Cross-Privilege-Boundary
Data Sampling,” in Proc. 2019 ACM CCS, 2019.

[126] M. Schwarzl, P. Borrello, G. Saileshwar, H. Müller, M. Schwarz,
and D. Gruss, “Practical Timing Side-Channel Attacks on Memory
Compression,” in Proc. 2023 IEEE S&P, 2023.

[127] SCONE. (2025). [Online]. Available: https://scontain.com/

[128] R. Seah, D. Khu, A. Hoover, and R. Ng, “LAMA: Leakage-Abuse
Attacks Against Microsoft Always Encrypted,” in Proc. 21st SE-
CRYPT, 2024.

[129] A. Shahverdi, M. Shirinov, and D. Dachman-Soled, “Database Re-
construction from Noisy Volumes: A Cache Side-Channel Attack on
SQLite,” in Proc. 30th USENIX Sec., 2021.

[130] S. Shinde, Z. L. Chua, V. Narayanan, and P. Saxena, “Preventing
Page Faults from Telling Your Secrets,” in Proc. 11th ACM Asia
CCS, 2016.

[131] S. Shinde, D. Le Tien, S. Tople, and P. Saxena, “Panoply: Low-TCB
Linux Applications with SGX Enclaves,” in Proc. 2017 NDSS, 2017.

[132] C. Spearman, “The Proof and Measurement of Association between
Two Things,” American J. Psych., vol. 15, no. 1, 1904.

[133] SQLite Authors. (2025) Database file format. [Online]. Available:
https://www.sqlite.org/fileformat.html

[134] ——, “Key distribution in balance_nonroot: SQLite v3.49.1,”
2025, SWHID: swh:1:cnt:1bd59a1b1fbc173298836772ac49e90409e
c7531;origin=https://github.com/sqlite/sqlite;visit=swh:1:snp:2c586
edae6bafc0069751f68571e03c88d46dfee;anchor=swh:1:rev:24fe85b
99a975094d835ea3f895b16e572512ad4;path=/src/btree.c;lines=845
0-8572.

[135] ——, “Page reassignment in balance_nonroot: SQLite
v3.49.1,” 2025, SWHID: swh:1:cnt:1bd59a1b1fbc173298836772ac
49e90409ec7531;origin=https://github.com/sqlite/sqlite;visit=swh:1
:snp:2c586edae6bafc0069751f68571e03c88d46dfee;anchor=swh:1:r
ev:24fe85b99a975094d835ea3f895b16e572512ad4;path=/src/btree.c
;lines=8624-8664.

[136] ——, “SQLite,” 2025, SWHID: swh:1:rev:3cd92ce875fd4e5601e5
35c35fef33494a6684e3;origin=https://github.com/sqlite/sqlite;visit=
swh:1:snp:2c586edae6bafc0069751f68571e03c88d46dfee. [Online].
Available: https://sqlite.org

[137] ——. (2025) SQLite Encryption Extension: Documentation.
[Online]. Available: https://www.sqlite.org/see/doc/release/www/
readme.wiki

[138] ——, “balance_quick routine: SQLite v3.49.1,” 2025, SWHID:
swh:1:cnt:1bd59a1b1fbc173298836772ac49e90409ec7531;origin=h
ttps://github.com/sqlite/sqlite;visit=swh:1:snp:2c586edae6bafc0069
751f68571e03c88d46dfee;anchor=swh:1:rev:24fe85b99a975094d83
5ea3f895b16e572512ad4;path=/src/btree.c;lines=7910-8027.

[139] ——. (2025) The SQLite R*Tree Module. [Online]. Available:
https://www.sqlite.org/rtree.html

[140] ——. (2025) VACCUM. [Online]. Available: https://sqlite.org/lang
vacuum.html

[141] U. Telle, “SQLite3 Multiple Ciphers v2.1.0,” 2025, SWHID: swh:1
:rel:3a7b6ce42760ee0f4707497f5456273b8efeb532;origin=https://gi
thub.com/utelle/SQLite3MultipleCiphers;visit=swh:1:snp:50ababf6a
7cb041fb0785c504ffc834204cdab7e.

[142] Texas Department of State Health Services, “Hospital
Inpatient Discharge Public Use Data File: 2018, First
quarter,” 2018. [Online]. Available: https://www.dshs.texas.gov/
center-health-statistics/texas-health-care-information-collection/

[143] Turso, “libSQL,” 2025. [Online]. Available: https://turso.tech/libsql

[144] United States Census Bureau. (2025) QuickFacts: Texas
(vintage year 2024). Archived Apr. 12, 2025. [On-
line]. Available: https://web.archive.org/web/20250412161446/https:
//www.census.gov/quickfacts/fact/table/TX/RHI125223#RHI125223

[145] S. van Schaik, A. Milburn, S. Österlund, P. Frigo, G. Maisuradze,
K. Razavi, H. Bos, and C. Giuffrida, “RIDL: Rogue In-Flight Data
Load,” in Proc. 2019 IEEE S&P, 2019.

[146] S. van Schaik, M. Minkin, A. Kwong, D. Genkin, and Y. Yarom,
“CacheOut: Leaking Data on Intel CPUs via Cache Evictions,” in
Proc. 2021 IEEE S&P, 2021.

[147] S. Van Schaik, A. Seto, T. Yurek, A. Batori, B. AlBassam,
D. Genkin, A. Miller, E. Ronen, Y. Yarom, and C. Garman, “SoK:
SGX.Fail: How Stuff Gets eXposed,” in Proc. 2024 IEEE S&P,
2024.

[148] A. Verbitski, A. Gupta, D. Saha, M. Brahmadesam, K. Gupta,
R. Mittal, S. Krishnamurthy, S. Maurice, T. Kharatishvili, and
X. Bao, “Amazon Aurora: Design Considerations for High Through-
put Cloud-Native Relational Databases,” in Proc. 2017 ACM SIG-
MOD, 2017.

[149] D. Vinayagamurthy, A. Gribov, and S. Gorbunov, “StealthDB: a
Scalable Encrypted Database with Full SQL Query Support,” Proc.
PETS, vol. 2019, no. 3, 2019.

[150] L. Wang, P. Grubbs, J. Lu, V. Bindschaedler, D. Cash, and T. Ris-
tenpart, “Side-Channel Attacks on Shared Search Indexes,” in Proc.
2017 IEEE S&P, 2017.

[151] W. Wang, G. Chen, X. Pan, Y. Zhang, X. Wang, V. Bindschaedler,
H. Tang, and C. A. Gunter, “Leaky Cauldron on the Dark Land:
Understanding Memory Side-Channel Hazards in SGX,” in Proc.
2017 ACM CCS, 2017.

[152] Y. Wang, Y. Shen, C. Su, J. Ma, L. Liu, and X. Dong, “CryptSQLite:
SQLite With High Data Security,” IEEE Trans. Comp., vol. 69, no. 5,
2020.

[153] WiredTiger. (2025) WiredTiger. [Online]. Available: https://source.
wiredtiger.com/

[154] Y. Xu, W. Cui, and M. Peinado, “Controlled-Channel Attacks:
Deterministic Side Channels for Untrusted Operating Systems,” in
Proc. 2015 IEEE S&P, 2015.

[155] Y. Yan, W. Huang, I. Grishchenko, G. Saileshwar, A. Mehta, and
D. Lie, “Relocate-Vote: Using Sparsity Information to Exploit Ci-
phertext Side-Channels,” in Proc. 34th USENIX Sec., 2025.

[156] X. Yang, C. Yue, W. Zhang, Y. Liu, B. C. Ooi, and J. Chen,
“SecuDB: An In-Enclave Privacy-Preserving and Tamper-Resistant
Relational Database,” Proc. VLDB Endow., vol. 17, no. 12, 2024.

[157] Y. Yuan, Z. Liu, S. Deng, Y. Chen, S. Wang, Y. Zhang, and Z. Su,
“HyperTheft: Thieving Model Weights from TEE-Shielded Neural
Networks via Ciphertext Side Channels,” in Proc. 2024 ACM CCS,
2024.

[158] ——, “CipherSteal: Stealing Input Data from TEE-Shielded Neural
Networks with Ciphertext Side Channels,” in Proc. 2025 IEEE S&P,
2025.

[159] Zetetic, “SQLCipher,” 2025, SWHID: swh:1:rel:f7632dc0d8f858d6c
1a17f5837bb4e01a5dd1abc;origin=https://github.com/sqlcipher/sqlc
ipher;visit=swh:1:snp:15cdef72c67f91077c44bc287f311fd7d9047d9
7.

[160] R. Zhang, L. Gerlach, D. Weber, L. Hetterich, Y. Lü, A. Kogler,
and M. Schwarz, “CacheWarp: Software-based Fault Injection using
Selective State Reset,” in Proc. 33rd USENIX Sec., 2024.

Appendix A.
Other Databases

As a proof-of-concept for the generalizability of our
techniques, we briefly consider how our attack may work on
other B+-tree databases. Our attack can also be generalized
to other B+-tree databases under the n-snapshot model by
adapting the rebalancing and node insertion steps to the
specific behaviors of the targeted B+-tree implementation.

SQLite Encryption Extension (SEE). SEE [137] is the
official transparent encryption mechanism for SQLite. We
did not evaluate our attacks on SEE because it costs $2000 to
access the source code. However, the documentation states
that SEE encrypts files in a way that preserves the original
page-alignment, just as in SQLC and S3MC. Consequently,
we hypothesize our methodology immediately generalizes
with an identity function as the inversion function.

libSQL. libSQL by Turso [143] is a open-source fork of
SQLite with additional features such as replication and
support for disaggregated storage. libSQL is based off of
SQLite and thus shares nearly identical B+-tree behavior. It
includes its own encrypted storage engine which is built on
SQLite3 Multiple Ciphers [141]. Because of this, we believe
LEAFBLOWER (using the S3MC inv function) generalizes
immediately against libSQL without any modifications.

PostgreSQL and others. Due to space restrictions, we
briefly describe some differences as to how our attack gener-
alizes to PostgreSQL [122] and leave a complete description
to the full version. Surprisingly, PostgreSQL is easier to
attack than SQLite since it stores each B+-tree index in
separate files. Thus, no disambiguation is needed and the
leaf ordering algorithm from Section 5.2 works with a sim-
ple adaptation to the rebalance procedure. This also means
that, unlike in SQLite, the attack immediately generalizes
to PostgreSQL tables with multiple indexed columns.

There are some limits on the adversarial model in this
setting due to PostgreSQL’s use of a write-ahead log (WAL)
[110]. Unlike the default behavior of SQLite (which updates
the index after every operation), a PostgreSQL index is
not updated immediately—updates are instead appended to
a separate WAL file. Every 5 minutes or when the WAL

reaches a size limit, a checkpoint occurs where the contents
of the WAL are copied back into the existing index. The
WAL has a very minimal structure and (at least in the multi-
snapshot model we consider) the checkpointing process
reveals minimal information about the index structure.

To be clear, the n-snapshot model still works if each
checkpoint contains only one operation to the index of
interest—we just believe that this is a less likely model than
in SQLite given the constraints above, so we do not make
these databases the main focus of this paper. Nevertheless,
our results show that our attack may generalize to other
B+-tree-based storage engines since they exhibit similar
structural properties. Such databases (e.g. MongoDB [153],
MySQL [113]) have their own ESEs and may also be run
under enclaves using a LibOS.

Appendix B.
Inverting Gramine with 4 KiB SQLite Pages

In this section, we elaborate on the concerns described in
Section 4 about how Gramine’s use of a 1 KiB offset at the
start of encrypted files can introduce additional ambiguities
when SQLite’s logical database page size P is set to 4 KiB.
Consider such a database deployment and any contiguous
sequence of SQLite pages of size 4 KiB p1, p2, p3 (that is,
p1 + 2 = p2 + 1 = p3). This sequence of three pages
spans a set of four 4 KiB blocks {j1, j2, j3, j4} in the
Gramine encrypted file format. Then, consider the inversion
process for the plaintext delta ∆i for an encrypted delta
∆enc

i that includes all four of these Gramine blocks (that is,
{j1, j2, j3, j4} ⊆ ∆enc

i). We can easily see that p1 ∈ ∆i and
p3 ∈ ∆i, but it is not possible to definitively determine
whether p2 ∈ ∆i. At first glance, the additional noise
introduced by these cases could theoretically lead to a loss
of accuracy in the attack.

Fortunately, our attack methodology already provides us
with several mechanisms that we can use to disambiguate
nearly all of these cases. Our algorithm already makes use
of several structural properties of B+-tree insertions that,
if violated, alert us that our initial decision for an ambi-
guity was incorrect—in particular, recall the backtracking
mechanism that we use to handle the ambiguous “imposter”
leaf cases discussed in Section 5.2. As such, we can use
similar backtracking techniques to handle this edge case.
Specifically, for each ambiguous ∆enc

i , our attack makes an
initial guess as to whether p2 ∈ ∆enc

i . Then, we attempt
to run the disambiguation and restructuring portions of the
attack as normal. If processing an ambiguous ∆enc

i results in
a structural violation, we backtrack and toggle our original
guess for p2 ∈ ∆enc

i . We repeat this process until we find a
“satisfiable” assignment of encrypted deltas ∆enc

i .
Theoretically, we may need to try every possible assign-

ment of ambiguous ∆enc
i ’s in the worst-case. In practice,

this is not a concern since (1) we experimentally found that
using a conservative approach (where we guess p2 /∈ ∆enc

i

by default) results in a relatively small number of deltas
that actually need backtracking in many workloads and

Page Size P = 4096 8192 16384 32768

G
ue

ss
vs

A
ct

ua
l

Va
lu

e
(d

ia
go

na
l

is
pe

rf
ec

t
gu

es
s)

E
rr

or
vs

Tr
an

sc
ri

pt
In

de
x

(m
id

lin
e

is
0

er
ro

r)

LB NV Ad LB NV Ad LB NV Ad LB NV Ad

ERecov%
(higher
better)

Q1 14 0.4 13 3 0.4 2 1 0.4 0 1 0.4 0
Q2 38 0.4 37 19 0.4 18 4 0.4 3 1 0.4 0
Q3 64 0.4 63 21 0.4 20 15 0.4 14 3 0.4 2
Q4 88 0.4 87 29 0.4 28 18 0.4 17 7 0.4 6

AvgAbs
Err%

(low better)

Q1 5.4 33 11 33 18 33 26 33
Q2 0.2 33 0.8 33 3 33 10 33
Q3 0.1 33 0.3 33 0.9 33 4 33
Q4 0.0 33 0.3 33 0.5 33 1 33

rs = 0.977 0.950 0.903 0.815

Figure 9: Evaluation on synthetic, random 1 byte INT datasets (where D = 28, n = 1000000, and max(s) = 1), but with different page sizes
P ∈ {4096, 8192, 16384, 32768}. As the page size increases, the exact recovery rate decreases and the average error increases. This shows that a
potential mitigation for the attack is to increase the page size from the default P = 4096 to a larger page size. However, this is not necessarily a robust
mitigation in the long-term, as the error graphs show that the error minimizes as the transcript length increases.

(2) such ambiguities primarily appear very early in the
operation transcript (when the size of the database index
is small). Furthermore, manual inspection of the contiguity
violations can usually avoid significant exploration of the
search space. Since this is an edge case, we opt for a
simpler implementation of this technique in our attack—
when violations occur, the attacker manually inspects the
contiguity violations and input a new guesses that can
reduce the backtracking considerably. Once all violations
are resolved, we find that the accuracy of our attacks is not
affected by these ambiguities. This shows that the “structural
leakage” methodology (leveraging expected properties of the
underlying data structure to identify possible errors) can
actually correct “noisy” leakage. This gives further credence
to this attack methodology for future work.

Appendix C.
Addressable Linked List with Rebalance

The LeafOrganizer data structure (denoted LO) used in
Algorithm 2 is instantiated as an addressable doubly-linked
list and captures the current order of the index tree’s leaves
(and the values in each leaf). Specifically, each LO node np

corresponds to a node p in the index tree. Each np maintains
a sequence of operation identifiers corresponding to the
insertions whose values are (currently) contained within p.
A LeafOrganizer supports the following operations:

• Add(pi, j), which adds an operation identifier j to the
node ni (corresponding to the B+-tree leaf p).

• IsConsistent(p1, . . . , pk), which returns true if the
nodes np, . . . , nk are currently contiguous in LO and
false otherwise.

• Rebalance(p1, . . . , pk), which:
1) Verifies that IsContiguous(p1, . . . , pk) = true.
2) Reorders the nodes {n1, . . . , nk} so that they are in

the order n1, . . . , nk.
3) Redistributes the operation identifiers contained in

the nodes in {n1, . . . , nk} in a way that approxi-
mates10 the redistribution algorithm used in the B+-
tree rebalance operation.

• Enumerate(), which outputs the operation identifiers
stored in the list in their current order.

The complete pseudocode of the LeafOrganizer is con-
tained in the full version and the artifact [51].

10. As shown in [134], the actual redistribution algorithm implementa-
tion is more complex than simply evenly dividing the keys between the
nodes because it needs to handle the redistribution of variable-length keys.
Since the encoded length of a key is not learned as part of our attack, we
simplify and implement the redistribution algorithm as if it only handled
fixed-length keys. We find that, in practice, this is enough to maintain a
good approximate order reconstruction for the purposes of Algorithm 2.

Appendix D.
Meta-Review

The following meta-review was prepared by the program
committee for the 2026 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

D.1. Summary

This paper explores a new leakage abuse attack against
encrypted SQLite databases that use B-tree data structures.
The attack assumes it sees a snapshot of the encrypted pages
as seen from the file system after each update operation. The
attack recovers the structure of the underyling trees and,
from that, the approximate order of plaintext values stored.
From this they can use auxiliary data to mount an inference
attack to guess the values. They evaluate their attack on
synthetic and real data, showing it works well in many cases.

D.2. Scientific Contributions

The paper provides new insights on leakage abuse in a
setting that has not previously been explored, for practically
important targets (encrypted SQLite databases).

D.3. Reasons for Acceptance

1) No prior work has shown attacks that exploit this kind
of leakage.

2) This paper adds to the evidence that the “lift-and-shift”
model of TEE deployments has pitfalls in terms of side
channel attacks.

3) The attack techniques themselves are notable and of
potential broader value, showing how in the weaker-
than-usually-assumed leakage model an adversary can
recover approximate ordering information from write
accesses to B-tree data structures.

